3D computer models of the T-x-y diagrams, forming the LiF–NaF–CaF2–LaF3 T-x-y-z diagram
https://doi.org/10.17586/2220-8054-2020-11-3-345-354
Abstract
Giving professor P.P. Fedorov his due as the leading specialist in fluoride systems and using his theoretical investigations on the topology and geometry of phase diagrams of binary and ternary fluoride systems, as well as experimental results, obtained by colleagues under his leadership, the total geometric description of the systems, forming the LiF–NaF–CaF2–LaF3 system, which has considerable promise for the development of fourth generation fuels for nuclear reactors, has been received. For this purpose, three-dimensional computer models of all four ternary systems have been constructed and the T-x-y-z diagram of this fluoride system has been predicted.
Keywords
About the Authors
V. P. Vorob’evaRussian Federation
6, Sakhyanova str., Ulan-Ude, 670047
A. E. Zelenaya
Russian Federation
6, Sakhyanova str., Ulan-Ude, 670047
V. I. Lutsyk
Russian Federation
6, Sakhyanova str., Ulan-Ude, 670047
M. V. Lamueva
Russian Federation
6, Sakhyanova str., Ulan-Ude, 670047
References
1. Benes O., Konings R.J.M. Molten Salt Reactor Fuel and Coolant.ˇ Comprehensive Nuclear Materials, 2012, 3,P. 359–389.
2. Lutsyk V.I., Vorob’eva V.P., Zelenaya A.E. 3D Computer Model of the Ni–Cu–NiS–Cu2S Subsystem T-x-y Diagram above 575 ◦C. Russ. J. Phys. Chem., 2019, 93 (13), P. 2593–2599.
3. Lutsyk V.I., Vorob’eva V.P. 3D Computer Models of the T-x-y Diagrams, Forming the Fe–Ni–Co–FeS–NiS–CoS Subsystem. Russ. J. Phys. Chem., 2017, 91 (13), P. 2593–2599.
4. Lukiyanchuk G., Fedorov P.P. The BaF2–SnF4 System. Russ. J. Inorgan. Chem., 1996, 41 (5), P. 826–827.
5. Fedorov P.P., Buchinskaya I.I., et al. Phase Diagrams of the NaF–RF3 (R = Tb, Dy, Er) Systems. Russ. J. Inorgan. Chem., 1996, 41 (10), P. 1715–1719.
6. Fedorov P.P., Buchinskaya I.I., et al. Phase Diagrams of the NaF–RF3 (R = Tm, Yb, Lu) Systems. Russ. J. Inorgan. Chem., 1996, 41 (11), P. 1920–1924.
7. Ratnikova I.D., Korenev Y.M., et al. Phase Diagrams of the Systems BaF2–RF4 (R=Zr, Hf). Russ. J. Inorgan. Chem., 1997, 42 (2), P. 302–307.
8. Stasyuk V.A., Buchinskaya I.I., et al. Phase Diagram of the CaF2–SrF2–NdF3 System. Russ. J. Inorgan. Chem., 1998, 43 (5), P. 844–848.
9. Buchinskaya I.I., Fedorov P.P. Interaction of Lead Fluoride with Strontium and Calcium Fluorides. Russ. J. Inorgan. Chem., 1998, 43 (7), P. 1106–1110.
10. Fedorov P.P., Ivanovskaya N.A., et al. Phase Equilibria in the SrF2–BaF2–LaF3 System. Doklady Physical Chemistry, 1999, 366 (4–6), P. 168–170.
11. Zakalyukin R.M., Glazunova T.Yu., et al. Phase Equilibria in the Pb3Al2F12–Ba3In2F12 Section of the PbF2–BaF2–AlF3–InF3 Quaternary System. Russ. J. Inorgan. Chem., 1999, 44 (10), P. 1645–1648.
12. Fedorov P.P. Systems of Alcali and Rare-Earth Metal Fluorides. Russ. J. Inorgan. Chem., 1999, 4 (11), P. 1703–1727.
13. Korenev Yu.M., Antipov P.I., et al. Phase Diagrams for the RF3–HfF4 Systems (R is a rare-earth elements). Russ. J. Inorgan. Chem., 2000, 45 (2), P. 164–169.
14. Filatova N.G., Fedorov P.P. RbF–PrF3 System. Russ. J. Inorgan. Chem., 2000, 45 (5), P. 785–788.
15. Fedorov P.P., Buchinskaya I.I., et al. Phase Diagrams of the NaF–RF3 (R = La, Ce, Pr, Nd, Sm) Systems. Russ. J. Inorgan. Chem., 2000, 45 (6), P. 949–952.
16. Fedorov P.P., Buchinskaya I.I., et al. CaF2–BaF2 Phase Diagram. Doklady Physical Chemistry, 2005, 401 (2), P. 53–55.
17. Fedorov P.P., Rappo A.V. NaF–CaF2–YbF3 Phase Diagram. Russ. J. Inorgan. Chem., 2008, 53 (7), P. 1126–1129.
18. Fedorov P.P., Buchinskaya I.I., et al. Saddle Points on the Liquidus Surfaces of Solid Solutions in the PbF2–CdF2–RF3 Systems. Russ. J. Inorgan. Chem., 1996, 41 (3), P. 445–449.
19. Stasjuk V.A., Buchinskaya I.I., et al. Liquidus and Solidus of Fluorite Solid Solutions in the CaF2–SrF2–LaF3 System. Russ. J. Inorgan. Chem., 1998, 43 (8), P. 1266–1269.
20. Fedorov P.P., Sobolev B.P. Conditions for the Formation of Maxima on the Fusion Curves of Solid Solutions in Salt Systems. Russ. J. Inorgan. Chem., 1979, 24 (4), P. 574–575.
21. Fedorov P.P. Geometric Thermodynamic Description of the Congruent-Melting Points of Solid Solutions in Binary and Ternary Systems. Russian J. Inorgan. Chem., 2007, 52 (1), P. 116–120.
22. Fedorov P.P. Thermodynamic-Topological Analysis of Melt Solidification in the Vicinity of Singular Points in Phase Diagrams. Russ. J. Inorgan. Chem., 2005, 50 (12), P. 1933–1941.
23. Beilmann M., Benes O., Konings R.J.M., Fanghnel Th. Thermodynamic Investigation of the (LiF+NaF+CaFˇ 2+LaF3) System. J. Chem. Thermodynamics, 2011, 43, P. 1515–1524.
24. Lutsyk V.I., Vorobeva V.P., Computer Models of Eutectic Type T-x-y Diagrams with Allotropy. Two Inner Liquidus Fields of Two LowTemperature Modifications of the Same Component. J. Therm. Anal. Calorim., 2010, 101 (1), P. 25–31.
25. Lutsyk V.I., Vorobeva V.P. 3D Model of the T-x-y Diagram of the Bi–In–Sn System for Designing Microstructure of Alloys. Rus. J. Inorgan. Chem., 2016, 61 (2), P. 188–207.
26. Lutsyk V.I., Zelenaya A.E., Nasrulin E.R., Bimbaev E.S. System NaCl–CaCl2–MgCl2 system: elaboration of spatial computer model of T-diagram. Journal Melts, 2016, 3, P. 206–215. (In Russian)
27. Miura S. Geometrical Approach to Reaction Schemes of Multicomponent Phase Diagrams. J. Phase Equilibria and Diffusion, 2006, 27 (1), P. 34–46.
28. Lutsyk V.I., Vorob’eva V.P., Zelenaya A.E., Reference Book on the Oxide Systems Space Diagrams as a Tool for Data Mining. Solid State Phenomena, 2015, 230, P. 51–54.
29. Sobolev B.P., Fedorov P.P. Phase Diagrams of the CaF2–(Y, Ln)F3 Systems. I. Experimental. J. Less-Common Metals, 1978, 60, P. 33–46.
30. Svantner M., Mariani E., et al. Solid Solution with Fluorite Structure in the CaFˇ 2–LaF3 System. Crystal Research and Technology, 1979, 14 (3), P. 365–369.
31. Fedorov P.P., Mayakova M.N., et al. Phase Diagram of the NaF–CaF2 System and the Electrical Conductivity of a CaF2-Based Solid Solution. Rus. J. Inorg. Chem., 2016, 61 (11), P. 1472–1478.
32. Cazorla C., Errandonea D. Superionicity and Polymorphism in Calcium Fluoride at High Pressure. Physical Review Letters, 2014, 113, 235902.
33. Sharma YC. Synthesis and characterisation of CZTSe bulk materials for thermoelectric applications. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (2), P. 195–204.
34. Dong Y., Wang H., Nolas G.S. Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4. Phys. Status Solidi RRL, 2014, 8, P. 61–64. [35] Raju C., Falmbigl M., et al. Thermoelectric properties of chalcogenide based Cu2+xZnSn1xSe4. AIP Advanced., 2013, 3, 032106.
35. Shi X.Y., Huang F.Q., Liu M.L., Chen L.D. Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds
36. Cu2ZnSn1−xInxSe4. Appl. Phys. Lett., 2009, 94, 122103.
37. Chang K., Meng F., et al. Theory-guided bottom-up design of the FeCrAl alloys as accident tolerant fuel cladding materials. Journal of Nuclear Materials, 2019, 516, P. 63–72.
38. Lutsyk V.I. T-x-y diagrams of lead-free soldering systems with thermodynamic contours of minimal surfaces. Nanomaterials: Applications and Properties, 2011, 2 (1), P. 11–19.
39. Lutsyk V.I., Vorobeva V.P., Zelenaya A.E. 3D Computer Models of the Ag–Sb–Sn and MgO–Al2O3–SiO2 T-x-y Diagrams. Acta Physica Polonica, 2018, 133 (4), P. 763–766.
Review
For citations:
Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I., Lamueva M.V. 3D computer models of the T-x-y diagrams, forming the LiF–NaF–CaF2–LaF3 T-x-y-z diagram. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3):345–354. https://doi.org/10.17586/2220-8054-2020-11-3-345-354