Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Hydrothermal synthesis of CeO2 nanostructures and their electrochemical properties

https://doi.org/10.17586/2220-8054-2020-11-3-355-364

Abstract

Functional nanomaterials based on transition metal oxides are often used for the manufacture of supercapacitors and batteries, due to their special redox properties. The nanosized transition metal oxides used as the electrode material in some cases exhibit abnormally high values of capacitance and energy density. In this regard, it is important to understand what structural features of the nanomaterial determine the electrochemical characteristics of an electronic device. For this purpose, ceria nanorods and nanocubes were specifically synthesized under hydrothermal conditions at elevated pressure (15 MPa), different alkali contents, and two temperature regimes (100 and 180 C). The obtained CeO2 nanostructures were characterized using the methods of X-ray diffraction, transmission electron microscopy, and low-temperature nitrogen adsorption. The electrochemical properties of ceria nanostructures were investigated in 1 M Na2SO4 water electrolyte. The influence of the structural and surface characteristics of the synthesized nanorods and nanocubes on their charge storage ability is discussed. It was shown that CeO2 in the form of nanocubes demonstrate higher specific capacitance in comparison with nanorods, which makes them more attractive for application in supercapacitors with neutral electrolytes.

About the Authors

A. N. Bugrov
Institute of Macromolecular Compounds RAS; St. Petersburg Electrotechnical University ”LETI“
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg

ul. Professora Popova 5, 197376 St. Petersburg



V. K. Vorobiov
Institute of Macromolecular Compounds RAS
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg



M. P. Sokolova
Institute of Macromolecular Compounds RAS
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg



G. P. Kopitsa
Grebenshchikov Institute of Silicate Chemistry RAS; St. Petersburg Nuclear Physics Institute, NRC KI
Russian Federation

Makarova emb. 2., letter B, 199034 St Petersburg

Orlova roscha mcr. 1, 188300 Gatchina, Leningrad region



S. A. Bolshakov
St. Petersburg Electrotechnical University ”LETI“
Russian Federation

ul. Professora Popova 5, 197376 St. Petersburg



M. A. Smirnov
Institute of Macromolecular Compounds RAS
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg



References

1. Ivanova A.G., Karasev L.V., et al. Development and research of electroactive pseudocapacitor electrode pastes based on MnO2. Glass Physics and Chemistry, 2020, 46 (1), P. 96–101.

2. Zhuzhelskii D.V., Tolstopjatova E.G., et al. Electrochemical properties of PEDOT/WO3 composite films for high performance supercapacitor application. Electrochemica Acta, 2019, 299, P. 182–190.

3. Nawwar M., Poon R., et al. High areal capacitance of Fe3O4-decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy, 2019, 1, P. 124–133.

4. Ata M.S., Milne J., Zhitomirsky I. Fabrication of Mn3O4–carbon nanotube composites with high areal capacitance using cationic and anionic dispersants. Journal of Colloid and Interface Science, 2018, 512, P. 758–766.

5. Asim S., Javed M.S., et al. RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries. Electrochimica Acta, 2019, 326, P. 135009.

6. Ahmed S. Etman A.S., Wang Z., et al. Flexible freestanding MoO3-x–carbon nanotubes–nanocellulose paper electrodes for charge-storage applications. ChemSusChem, 2019, 12, P. 5157–5163.

7. Yang Z., Tang L., et al. Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors. Electrochimica Acta, 2018, 269 (10), P. 21–29.

8. Khan A.J., Hanif M., et al. Energy storage properties of hydrothermally processed nanostructured porous CeO2 nanoparticles. Journal of Electroanalytical Chemistry. 2020, 865, P. 114158.

9. He L., Su Y., Jiang L., Shi S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: A review. Journal of Rare Earths, 2015, 33 (8), P. 791–799.

10. Younis A., Chu D., Li S. Cerium oxide nanostructures and their applications. Functionalized Nanomaterials, 2016, 3, P. 53–68.

11. Ivanov V.K., Baranchikov A.E., et al. Oxygen nonstoichiometry of nanocrystalline ceria. Russian Journal of Inorganic Chemistry, 2010, 55 (3), P. 325–327.

12. Kabir A., Zhang H., Esposito V. Mass diffusion phenomena in cerium oxide. In S. Scire, & L. Palmisano (Eds.),` Cerium Oxide (CeO2): Synthesis, Properties and Applications, 2019, 5, P. 169–210.

13. Mogensen M., Sammes N.M., Tompsett G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 2000, 129 (1–4), P. 63–94.

14. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (6), P. 810–815.

15. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), P. 164–175.

16. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews – Science and Engineering, 1996, 38 (4), P. 439– 520.

17. Nikolaeva A.L., Gofman I.V., et al. Interplay of polymer matrix and nanosized Redox dopant with regard to thermo-oxidative and pyrolytic stability: CeO2 nanoparticles in a milieu of aromatic polyimides. Materials Today Communications, 2020, 22, P. 100803.

18. Omar S., Wachsman E.D., Nino J.C. Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Applied Physics Letters, 2007, 91 (14), P. 144106.

19. Dhall A., Self W. Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants, 2018, 7 (97), 13 p.

20. Zhou F., Zhao X., Xu H., Yuan C. CeO2 spherical crystallites: Synthesis, formation mechanism, size control, and electrochemical property study. Journal of Physical Chemistry C, 2007, 111 (4), P. 1651–1657.

21. Deshpande S., Patil S., Kuchibhatla S.V., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters, 2005, 87 (13), P. 133113.

22. Wu Z., Li M., et al. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir, 2010, 26 (21), P. 16595–16606.

23. Li C., Sun Y., et al. Shape-controlled CeO2 nanoparticles: Stability and activity in the catalyzed HCl oxidation reaction. ACS Catalysis, 2017, 7 (10), P. 6453–6463.

24. Tang W.-X., Gao P.-X. Nanostructured CeO2: preparation, characterization, and application in energy and environmental catalysis. MRS Communications, 2016, 6 (4), P. 311–329.

25. Mai H.-X., Sun L.-D., et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. Journal of Physical Chemistry B, 2005, 109, P. 24380–24385.

26. Trovarelli A., Llorca J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catalysis, 2017, 7, P. 4716–4735.

27. Zhang D., Du X., Shi L., Gao R. Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Transactions, 2012, 41 (48). P. 14455–14475.

28. Ji Z., Wang X., et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano, 2012, 6 (6), P. 5366–5380.

29. Popov A.L., Ermakov A.M., et al. Biosafety and effect of nanoparticles of CeO2 on metabolic and proliferative activity of human mesenchymal stem cells in vitro. Nanomechanics Science and Technology: An International Journal, 2016, 7 (2), P. 165–175.

30. Shcherbakov A.B., Zholobak N.M., Spivak N.Ya., Ivanov V.K. Advances and prospects of using nanocrystalline ceria in cancer theranostics. Russian Journal of Inorganic Chemistry, 2014, 59 (13), P. 1556–1575.

31. Jeyaranjan A., et al. Morphology and crystal planes effects on supercapacitance of CeO2 nanostructures: Electrochemical and molecular dynamics studies. Particles and Particle Systems Characterization, 2018, 35 (10), P. 1800176.

32. Kumar M., Bhatt V., et al. Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles. Electrochimica Acta, 2018, 284, P. 709–720.

33. Ranjith K.S., Saravanan P., et al. Enhanced room-temperature ferromagnetism on co-doped CeO2 nanoparticles: Mechanism and electronic and optical properties. Journal of Physical Chemistry C, 2014, 118 (46), P. 27039–27047.

34. Lutterotti L., Pilliere H., et al. Full-profile search–match by the Rietveld method. Journal of Applied Crystallography, 2019, 52, P. 587–598.

35. Plakhova T.V., Romanchuk A.Yu., et al. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling. The Journal of Physical Chemistry C, 2016, 120 (39), P. 22615–22626.

36. Grier D., McCarthy G. ICDD Grant-in-Aid, North Dakota State University, Fargo, North Dakota, USA, 1991.

37. Yan L., Yu R., Chen J., Xing X. Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: Investigation of the morphology evolution. Crystal Growth & Design, 2008, 8 (5), P. 1474–1477.

38. Ivanov V.K., Polezhaeva O.S., et al. Specifics of high-temperature coarsening of ceria nanoparticles. Russian Journal of Inorganic Chemistry, 2009, 54 (11), P. 1689–1696.

39. Shakir I., Shahid M., Rana A.U., Warsi F.M. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors. RSC advances, 2014, 4 (17), P. 8741–8745.

40. Cui C., Han J., et al. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode. Journal of catalysis, 2016, 343, P. 257–265.

41. Yoshiike N., Kondo S. Electrochemical properties of WO3x(H2O): I. The influences of water adsorption and hydroxylation. Journal of The Electrochemical Society, 1983, 130 (11), P. 2283–2287.

42. Agarwal S., Lefferts L., Mojet B.L. Ceria nanocatalysts: Shape dependent reactivity and formation of OH. ChemCatChem, 2013, 5 (2), P. 479–489.

43. Lypez J.M., Gilbank A.L., et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 2015,174–175, P. 403–412.

44. Ta N., Liu J., et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. Journal of the American Chemical Society, 2012, 134 (51), P. 20585–20588.

45. Wang S., Zhao L., et al. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale, 2013, 5 , P. 5582–5588.

46. Ivanov V.K., Polezhaeva O.S., Tret’yakov Yu.D. Nanocrystalline ceria: Synthesis, structure-sensitive properties, and promising applications. Russian Journal of General Chemistry, 2010, 80 (3), P. 604–617.

47. Maheswari N., Muralidharan G. Supercapacitor behaviour of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy Fuels, 2015, 29(12), P. 8246–8253.

48. Ardizzone S., Fregonara G., Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochimica Acta, 1990, 35 (1), P. 263–267.


Review

For citations:


Bugrov A.N., Vorobiov V.K., Sokolova M.P., Kopitsa G.P., Bolshakov S.A., Smirnov M.A. Hydrothermal synthesis of CeO2 nanostructures and their electrochemical properties. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3):355–364. https://doi.org/10.17586/2220-8054-2020-11-3-355-364

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)