Comparison of non classical effects: quantum phase fluctuation, antibunching and minimum total noise in various non linear optical processes
https://doi.org/10.17586/2220-8054-2020-11-2-161-170
Abstract
We study various non classical effects of light like reduction of quantum phase fluctuation, antibunching and minimum total noise present in various nonlinear optical processes. Further, we have shown that depth of non-classicality can be directly measured using all these parameters. We have done the comparative study to correlate these non-classical effects in seven wave mixing, eight wave mixing and third harmonic generation.
About the Authors
. PriyankaIndia
Kurukshetra 136119
Savita Gill
Russian Federation
Kurukshetra 136119
References
1. Meystre P., Sargent III M. Elements of quantum optics, Second ed., Springer, Berlin, 1999.
2. Dodunov V.V. Theory of nonclassical states of light. Monko V.I. (Eds.), Taylor and Francis, New York, 2003.
3. Orlowski A. Classical entropy of quantum states of light. Phyical Review A, 1993, 48 (1), P. 727–731.
4. Lynch R. The quantum phase problem: a critical review. Physical Review, 1995, 256 (6), P. 367–436.
5. Perinova V., Luks A., Perina J. Phase in optics, Chapter 4. World Scientific, Singapore, 1998.
6. Ficek Z., Wahidd M.R. Quantum optics fundamental and applications, Chapter 4. IIUM Kuala Lumppur, 2004.
7. Barnett S.M., Pegg D.T. Phase in quantum optics. Journal of Physics A: Mathematical and General, 1986, 19 (18), P. 3849–3862.
8. Pegg D.T., Barnett S.M. Phase properties of the quantized single model electromagnetic field. Physical Review A, 1989, 39 (4), P. 1665–1675.
9. Susskind L., Glogower J. Quantum mechanical phase and time operator. Physics Physique Fizika, 1964, 1 (1), P. 49–61.
10. Vaccaro J.A., Pegg D.T. On measuring extremely small phase fluctuations. Optics Commnication, 1964, 105 (5–6), P. 335–340.
11. Lynch R. Phase fluctuations in the coherent light anharmonic oscillator systems via measured phase operators. Optics Communication, 1988, 67 (1), P. 67–70.
12. Pegg D.D., Vaccaro J.A. Phase properties of squeezed states of light. Optics communication, 1989, 70 (6), P. 529–534.
13. Sanders C., Barnett S.M., Knight P.L. Phase variables and squeezed states. Optics Communication, 1986, 58 (4), P. 290–294.
14. Tsui Y.K. Josephson tunneling between superconductors in the angle-operator formalism. Physical Review B: Condensed Matter, 1993, 47 (18), P. 12296–12299.
15. Lynch R. Phase fluctuations in a squeezed state using measured phase operators. Optical Society of America B, 1987, 4 (10), P. 1723–1726.
16. Carruthers P., Nieto M.M. Phase and angle variables in quantum mechanics. Review Modern Physics, 1968, 40 (2), P. 411–440.
17. Yao D. Phase properties of squeezed states of light. Phys. Lett. A, 1987, 122 (2), P. 77–83.
18. Fan H.Y., Zaidi H.R. An exact calculation of the expectation values of phase operators in squeezed states. Optics Communication, 1988, 68 (2), P. 143–148.
19. Pathak A., Mandal S. Phase fluctuations of coherent light coupled to a nonlinear medium of inversion symmetry. Physics Letter A, 2000, 272 (5–6), P. 346–352.
20. Verma A., Pathak A. Reduction of quantum phase fluctuation in intermediate states. Physics Letter A, 2009, 373 (16), P. 1421–1428.
21. Kreibig U., Vollmer M. Optical properties of metal clusters. Springer Series in Materials Science, 1995, 25, P. 278–279.
22. Seongmin J.U., Wateker P.R., Jeong S. Nonlinear optical properties of zinc doped germane silicate glass optical fibre. Journal Nonlinear Optical Physics Matter, 2011, 19, P. 791–799.
23. Xie R.H. Handbook of advanced electronic and photonic materials and devices. H.S. Nalwa (Ed.), Elsevier, 2000, 9, P. 267–307.
24. Xie R.H., Rao Q., Jensen L. Encyclopedia of nanoscience and nanotechnology, H.S. Nalwa (Ed.), Elsevier, 2003.
25. Stentz A.J., Boyd R.W. Hanbook of photonics, M.C. Gupta (Ed.), Chapter 5. CRC Press, 1997.
26. Wang Q., Jianfeng Xu, Xie R.H. Nonlinear optics of nanoparticles and nanocomposites. Encyclopedia of nanoscience and nanotechnology, H.S. Nalwa (Ed.), 2004, 8, P. 101–111.
27. Danilin S., Lebedev A.V. Quantum enhanced magnetometry by phase estimation algorithms with a single artificial atom. NPJ Quantum Information, 2018, 4, P. 1–7.
28. Chakraverty B.K. Quantum phase fluctuation in high T)c superconductors. Physica C, 2000, 341–348 (1), P. 75–78.
29. Radkevich A., Semenov A.G., Zaikin A.D. Quantum phase fluctuations and density of states in superconducting nanowires. Physical Review B, 2017, 96 (8), 085435.
30. Faccioli M., Salasnich L. Gaussian quantum fluctuations in thesuperfluid Mott insulator phase transition. Physical Review A, 2019, 99 (2), 023614.
31. Hillery M., Total noise and nonclassical states. Physical Review A, 1989, 39 (6), 2994.
Review
For citations:
Priyanka , Gill S. Comparison of non classical effects: quantum phase fluctuation, antibunching and minimum total noise in various non linear optical processes. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):161–170. https://doi.org/10.17586/2220-8054-2020-11-2-161-170