Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Shannon entropy associated with electrochemically generated ion concentration gradients

https://doi.org/10.17586/2220-8054-2020-11-2-171-175

Abstract

In this work, we discuss Shannon entropy in relation to ion distribution in solutions. Shannon entropy is a key concept of information theory. Discussion of ion solutions informational entropy is essential for consideration of ions as information carriers in iontronic devices. We studied entropy associated with ions redistribution using model electrochemically triggered local ion fluxes. For this purpose, we utilized bare gold electrodes as well as covered by polyelectrolyte layers and lipids. Modification of the electrode surface leads to a change of ion flux triggered by hydroquinone oxidation. Consequently, various distribution of ions in solution can be obtained. Shannon entropy was evaluated for diverse ion distributions.

About the Authors

N. V. Ryzhkov
ITMO University
Russian Federation

9, St. Petersburg, 191002



V. Yu. Yurova
ITMO University
Russian Federation

9, St. Petersburg, 191002



E. V. Skorb
ITMO University
Russian Federation

9, St. Petersburg, 191002



References

1. Fomina N., Johnson C.A., et al. An electrochemical platform for localized pH control on demand. Lab Chip., 2016, 16, P. 2236–2244.

2. Garnier T., Dochter A., et al. Surface confined self-assembly of polyampholytes generated from charge-shifting polymers. Chem. Commun., 2015, 51, P. 14092–14095.

3. Dochter A., Garnier T., et al. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach. Langmuir, 2015, 31 (37), P. 10208–10214.

4. Ryzhkov N.V., Mamchik N.A., Skorb E.V. Electrochemical triggering of lipid bilayer lift-off oscillation at the electrode interface. J. R. Soc. Interface, 2019, 16 (150), 20180626.

5. Maza E., Tuninetti J.S., et al. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups. Phys. Chem. Chem. Phys., 2015, 17, P. 29935–29948.

6. Ryzhkov N.V., Nesterov P., et al. Localization of ion concentration gradients for logic operation. Front. Chem., 2019, 7, 419.

7. Ryzhkov N.V., Andreeva D.V., Skorb E.V. Coupling pH-Regulated Multilayers with Inorganic Surfaces for Bionic Devices and Infochemistry. Langmuir, 2019, 35 (26), P. 8543–8556.

8. Ryzhkov N.V., Brezhneva N., Skorb E.V. Feedback mechanisms at inorganic polyelectrolyte interfaces for applied materials. Surf. Innov., 2019, 7 (3–4), P. 145–167.

9. Decher G., Eckle M., Schmitt J., Struth B. Layer-by-layer assembled multicomposite films. Curr. Opin. Colloid Interface Sci., 1998, 3 (1), P. 32–39.

10. Zhukova Y., Hiepen C., et al. The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration. Adv. Healthc. Mater., 2017, 6 (15), 1601244.

11. Rmaile H.H., Farhat T.R., Schlenoff J.B. pH-gated Permeability of Variably Charged Species through Polyelectrolyte Multilayer Membranes. J. Phys. Chem. B, 2003, 107 (51), P. 14401–14406.

12. Nikitina A.A., Ulasevich S.A., et al. Nanostructured Layer-by-Layer Polyelectrolyte Containers to Switch Biofilm Fluorescence. Bioconjug. Chem., 2018, 29 (11), P. 3793–3799.

13. Schonhoff M. Self-assembled polyelectrolyte multilayers.¨ Curr. Opin Colloid Interface Sci., 2003, 8 (1), P. 86–95.

14. Selin V., Ankner J.F., Sukhishvili S.A. Nonlinear Layer-by-Layer Films: Effects of Chain Diffusivity on Film Structure and Swelling. Macromolecules, 2017, 50 (16), P. 6192–6201.

15. Fares H.M., Schlenoff J.B. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers. J. Am. Chem. Soc., 2017, 139 (41), P. 14656–14667.

16. Steitz R., Leiner V., Siebrecht R., Klitzing R. Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids Surfaces A Physicochem. Eng. Asp., 2000, 163 (1), P. 63–70.

17. Steitz R., Jaeger W., Klitzing R. Influence of charge density and ionic strength on the multilayer formation of strong polyelectrolytes. Langmuir, 2001, 18 (4), P. 1408–1412.

18. Karg M., Pastoriza-Santos I., et al. Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir, 2008, 24 (12), P. 6300–6306.

19. Klitzing R., Mohwald H. A realistic diffusion model for ultrathin polyelectrolyte films.¨ Macromolecules, 1996, 29 (21), P. 6901–6906.

20. Farhat T.R., Schlenoff J.B. Ion transport and equilibria in polyelectrolyte multilayers. Langmuir, 2001, 17 (4), P. 1184–1192.

21. Hoshi T., Saiki H., Anzai J.I. Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta, 2003, 61 (3), P. 363–368.

22. Fu J., Fares H.M., Schlenoff J.B. Ion-Pairing Strength in Polyelectrolyte Complexes. Macromolecules, 2017, 50 (3), P. 1066–1074.

23. Kelly K.D., Fares H.M., Abou Shaheen S., Schlenoff J.B. Intrinsic Properties of Polyelectrolyte Multilayer Membranes: Erasing the Memory of the Interface. Langmuir, 2018, 34 (13), P. 3874–3883.

24. Banda P., Teuscher C., Stefanovic D. Training an asymmetric signal perceptron through reinforcement in an artificial chemistry. J. R. Soc. Interface, 2014, 11 (93), 20131100.

25. Diamanti E., Gregurec D., et al. Lipid layers on polyelectrolyte multilayers: Understanding lipid-polyelectrolyte interactions and applications on the surface engineering of nanomaterials. J. Nanosci. Nanotechnol., 2016, 16 (6), P. 5696–5700.

26. Souto R.M., Lamaka S.V., Gonzalez S. Uses of Scanning Electrochemical Microscopy in Corrosion Research. In:´ Microscopy: Science, Technology, Applications and Education, 2010.

27. Scholfield C.R. Composition of Soybean Lecithin. J. Am. Oil Chem. Soc., 1981, 58 (10), P. 889–892.

28. Shannon C.E. A Mathematical Theory of Communication. Bell Labs Tech. J., 1948, 27 (3), P. 379–423.

29. Haken H. Information and Self-Organization. A Macroscopic Approach to Complex Systems. Springer, Berlin, 2006, 257 p.


Review

For citations:


Ryzhkov N.V., Yurova V.Yu., Skorb E.V. Shannon entropy associated with electrochemically generated ion concentration gradients. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):171–175. https://doi.org/10.17586/2220-8054-2020-11-2-171-175

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)