Electronic transport in penta-graphene nanoribbon devices using carbon nanotube electrodes: A computational study
https://doi.org/10.17586/2220-8054-2020-11-2-176-182
Abstract
Electronic transport properties of pristine, homogenously and heterogeneously boron-nitrogen doped saw-tooth penta-graphene nanoribbon (SPGNR) with carbon nanotube electrodes have been studied using Extended Huckel Theory in combination with the non-equilibrium Green’s function formalism. CNT electrodes produce a remarkable increase in current at higher bias voltages in pristine SPGNR. The current intensity is maximum at higher bias voltages, while the nitrogen-doped model shows current from the onset of the bias voltage. However, there are also considerable differences in the I-V curves associated with the pristine model and other models doped homogenously as well as heterogeneously with boron and nitrogen. The doped models also exhibit a small negative differential resistance effect, with much prominence in the nitrogen-doped model. In summary, our findings show clearly that doping can effectively modulate the electronic and the transport properties of penta-graphene nanoribbons that have not been studied and reported thus far.
About the Authors
M. Shunaid ParvaizIndia
Srinagar, J&K-190001
Srinagar, J&K-190006
Khurshed A. Shah
India
Srinagar, J&K-190001
G. N. Dar
India
Srinagar, J&K-190006
Sugata Chowdhury
United States
Washington, DC 20059
Olasunbo Farinre
United States
Washington, DC 20059
Prabhakar Misra
United States
Washington, DC 20059
References
1. Kroto H.W., Heath J.R., OBrien, S.C., Curl R.F., Smalley R.E. C60: Buckminsterfullerene. Nature, 1985, 318, P. 162–165.
2. Shah K.A., Parvaiz M.S. Computational comparative study of substitutional, endo and exo BN Co-Doped single walled carbon nanotube system. Superlattices and Microstructures, 2016, 93, P. 234–241.
3. Shah K.A., Parvaiz M.S. Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor. Superlattices and Microstructures, 2016, 100, P. 375–380.
4. Shah K.A., Parvaiz M.S., Dar G.N. Photocurrent in single walled carbon nanotubes. Physics Letters A, 2019, 383, P. 2207–2212.
5. Zwanenburg F.A., Van der Mast D.W., et. al. Electric Field Control of Magnetoresistance in InP Nanowires with ferromagnetic Contacts. Nano Letters, 2009, 9, P. 2704–2709.
6. Li Y., Xu L., Liu H. Chem, Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev., 2014, 43, P. 2572–2586.
7. Malko D., Neiss C., Vines F., Gorling A. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett., 2012, 108, P. 086804.
8. Mina M., Susumu O. Two-Dimensional sp2 Carbon Network of Fused Pentagons: All Carbon Ferromagnetic Sheet. Appl. Phys. Express, 2013, 6, P. 095101.
9. Terrones H., et al. New Metallic Allotropes of Planar and Tubular Carbon. Phys. Rev. Lett., 2000, 84, P. 1716–1719.
10. Xu L.C., et al. Two dimensional Dirac carbon allotropes from graphene. Nanoscale, 2014, 6, P. 1113–1118.
11. Bucknum M.J., Hoffmann R. A Hypothetical Dense 3,4-Connected Carbon Net and Related B2C and CN2 Nets Built from 1,4Cyclohexadienoid Units. J. Am. Chem. Soc., 1994, 116, P. 11456–11464.
12. Zhang S., Wang Q., Chen X., Jena P. Stable three-dimensional metallic carbon with interlocking hexagons. Proc. Natl. Acad. Sci., 2013, 110, P. 18809–18813.
13. Omachi H., Nakayama T., Takahashi E., Segawa Y., Itami K. A grossly warped nanographene and the consequences of multiple oddmembered-ring defects. Nat. Chem., 2013, 5, P. 739–744.
14. Deza M., Fowler P.W., Shtogrin M., Vietze K. Pentaheptite Modifications of the Graphite Sheet. J. Chem. Inf. Comput. Sci., 2000, 40, P. 1325– 1332.
15. Tan Y.Z., Xie S.Y., Huang R.B., Zheng L.S. The stabilization of fused-pentagon fullerene molecules. Nat. Chem., 2009, 1, P. 450–460.
16. Prinzbach H., et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 2000, 407, P. 60–63.
17. Wang Y., et al. Template Effect in the Competition between Haeckelite and Graphene Growth on Ni(111): Quantum Chemical Molecular Dynamics Simulations. J. Am. Chem. Soc., 2011, 133, P. 18837–18842.
18. Yagmurcukardes M., Sahin H., Kang J., Torun E., Peeters F.M., Senger R.T. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide. J. Appl. Phys., 2015, 118, P. 104303–104306.
19. Yu Z.G., Zhang Y.W. A comparative density functional study on electrical properties of layered penta-graphene. J. Appl. Phys., 2015, 118, P. 165706.
20. Xu W., Zhang G., Li B. Thermal conductivity of penta-graphene from molecular dynamics study. J. Chem. Phys., 2015, 143, P. 154703– 154706.
21. Cranford S.W. When is 6 less than 5? Penta-to hexa-graphene transition. Carbon, 2016, 96, P. 421–428.
22. Lopez-Bezanilla A., Littlewood P.B. σ–π-Band Inversion in a Novel Two-Dimensional Material. J. Phys. Chem. C, 2015, 119, P. 19469– 19474.
23. Stauber T., Beltran J.I., Schliemann J. Tight-binding approach to penta-graphene. Sci. Rep., 2016, 6, P. 22672–22680.
24. Rajbanshi B., Sarkar S., Mandal B., Sarkar P. Energetic and electronic structure of pentagraphene nanoribbons. Carbon, 2016, 100, P. 118–125.
25. Avramov P., Demin V., Luo M., Choi C.H., Sorokin P.B., Yakobson B., Chernozatonskii L. Translation Symmetry Breakdown in LowDimensional Lattices of Pentagonal Rings. J. Phys. Chem. Lett., 2015, 6, P. 4525–4531.
26. Tien N.T., Thao P.T.B., Phuc V.T., Ahuja R. Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping, Physica E: Low-dimensional Systems and Nanostructure, 2019, 114, P. 113572.
27. Quantum ATK version P-2019.03, Synopsis Quantum ATK (www.synopsys.com/silicon/quantumatk.html).
28. Baughman R.H., Zakhidov A.A., de Heer W.A. Carbon nanotubes–the route toward applications. Science, 2002, 297, P. 787–792.
29. Landauer R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM J. Res. Dev., 1957, 1, P. 223– 231.
30. Berdiyorov G., Dixit G., Madjet M. Band gap engineering in penta-graphene by substitutional doping: first-principles calculations, J. Phys.: Condensed Matter, 2016, 28, P. 475001–475010.
Review
For citations:
Shunaid Parvaiz M., Shah Kh., Dar G.N., Chowdhury S., Farinre O., Misra P. Electronic transport in penta-graphene nanoribbon devices using carbon nanotube electrodes: A computational study. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):176–182. https://doi.org/10.17586/2220-8054-2020-11-2-176-182