Green’s function method for time-fractional diffusion equation on the star graph with equal bonds
https://doi.org/10.17586/2220-8054-2021-12-3-271-278
Abstract
This work devoted to construction of the Matrix-Green’s functions of initial-boundary value problems for the time-fractional diffusion equation on the metric star graph with equal bonds. In the case of Dirichlet and mixed boundary conditions we constructed Green’s functions explicitly. The uniqueness of the solutions of the considered problems were proved by the method of energy integrals. Some possible applications in branched nanostructures were discussed.
About the Authors
Z. A. SobirovUzbekistan
Z. A. Sobirov
Olimlar str., 49, 100041, Tashkent
Universitet str., 4, 100174, Tashkent
K. U. Rakhimov
Uzbekistan
K. U. Rakhimov
Universitet str., 4, 100174, Tashkent
R. E. Ergashov
Uzbekistan
R. E. Ergashov
Universitet str., 4, 100174, Tashkent
References
1. Dybiec B., Gudowska-Nowak E. Anomalous diffusion and generalized Sparre-Andersen scaling. Europhysics Letters Association, 2009, 88, P. 10003.
2. Langlands T.A.M., Henry B.I. Fractional Chemotaxis Diffusion Equations. Physics Review E, 2010, 81(5), P. 051102.
3. Henry B.I., Langlands T.A.M., Starka P. Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces. Physical Review Letters, 2010, 105, P. 170602.
4. Pskhu A., Rekhviashvili S. Fractional Diffusion-Wave Equation with Application in Electrodynamics. Mathematics, 2020, 8(2086), P. 1–13.
5. Goychuk I. Fractional time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower. Physics Review E, 2012, 86(2), P. 021113.
6. Aman S., Khan I., Ismail Z., Salleh M.Z., Tlili I. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy. Results in Physics, 2018, 9, P. 1352–1362.
7. Aman S., Khan I., Ismail Z., Salleh M.Z. Applications of fractional derivatives to nanofluids: exact and numerical solutions. Mathematical Modelling of Natural Phenomena, 2018, 13(1), P. 1–12.
8. Pskhu A.V. Fractional partial differential equations. Moscow, Nauka, 2005, 200 p.
9. Mehdi D., Mohammad D., Mohsen J. Introduction to Green’s Function and its Numerical Solution. Middle-East Journal of Scientific Research, 2012, 11(7), P. 974–981.
10. Chivilikhin S.A., Gusarov V.V., Popov I.Y. Charge pumping in nanotube filled with electrolyte. Chinese Journal of Physics, 2018, 56(5), P. 2531–2537.
11. Gerasimov D., Popov I., Blinova I., Popov A. Incompleteness of resonance states for quantum ring with two semi-infinite edges. Analysis and Mathematical Physics, 2019, 9, P. 1287–1302.
12. Kottos T., Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Annals of Physics, 1999, 274(1), P. 76–124.
13. Gnutzmann S., Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Advances in Physics, 2006, 55(5-6), P. 527–625.
14. Nikiforov D.S., Blinova I.V., Popov I.Y. Schr¨odinger and Dirac dynamics on time-dependent quantum graph. Indian Journal of Physics, 2019, 93(7), P. 913–920.
15. Khudayberganov G., Sobirov Z., Eshimbetov M. Unified transform method for the Schrodinger equation on a simple metric graph. Journal of Siberian Federal University, Mathematics and Physics, 2019, 12(4), P. 412–420.
16. Lobanov I.S., Nikiforov D.S., Popov I.Y., Trifanov A.I., Trifanova E.S. Model of time-dependent geometric graph for dynamical Casimir effect. Indian Journal of Physics, 2020, DOI: 10.1007/s12648-020-01866-5.
17. Smolkina M.O., Popov I.Y., Blinova I.V., Milakis E. On the metric graph model for flows in tubular nanostructures. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(1), P. 6–11.
18. Grishanov E.N., Eremin D. A., Ivanov D.A., Popov I.Yu., Smirnov P.I. Periodic chain of disks in a magnetic field: bulk states and edge states. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(5), P. 637–643.
19. Sobirov Z.A., Rakhimov K.U. Cauchy problem for the Airy equation with fractional time-fractional on a star-shaped graph. Institute of Mathematics Bulletin, Uzbekistan, 2019, 5, P. 40–49.
20. Rakhimov K.U. The method of potentials for the Airy equation of fractional order. Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 2020, 3(2), P. 222–235.
21. Rakhimov K.U., Sobirov Z.A. Jabborov N.M. The time-fractional Airy equation on the metric graph. Journal of Siberian Federal University, Mathematics and Physics, 2021, 14(3), P. 376–388.
22. Alikhanov A.A. A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations. Differential equations, 2010, 46(5), P. 658–664.
23. Andrade F.M., Schmidt A.G.M., Vicentini E., Cheng B.K., M.G.E. da Luz. Green’s function approach for quantum graphs: An overview. Physics Reports, 2016, 647, P. 1–46.
Review
For citations:
Sobirov Z.A., Rakhimov K.U., Ergashov R.E. Green’s function method for time-fractional diffusion equation on the star graph with equal bonds. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):271-278. https://doi.org/10.17586/2220-8054-2021-12-3-271-278