Dynamics of polarons in branched conducting polymers
https://doi.org/10.17586/2220-8054-2020-11-2-183-188
Abstract
In this paper, we study polarons in branched conducting polymers. For the description of polarons dynamics in such a polymers, we use the modified SSH-model in combination with quantum graph concept. Applications and possible extensions of the model are discussed.
About the Authors
K. K. SabirovUzbekistan
108 Amir Temur Str., 100200, Tashkent
J. R. Yusupov
Uzbekistan
17 Niyazov Str., 100095, Tashkent
Kh. Sh. Matyokubov
Uzbekistan
14 H. Olimjon Str., 220100, Urgench
References
1. Heeger A.J., and R. Pethig. Charge Storage and Charge Transport in Conducting Polymers: Solitons, Polarons and Bipolarons [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 314(1528), P. 17–35.
2. Heeger A.J. Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials, Rev. Mod.Phys., 2001, 73, P. 681.
3. Heeger A.J., Kivelson S., Schrieffer J.R., Su W.-P. Solitons in conducting polymers. Rev. Mod.Phys., 1988, 60, P. 781.
4. Su W.P., Schrieffer J.R., Heeger A.J. Solitons in Polyacetylene. Phys. Rev. Lett., 1979. 42, P. 1698.
5. Brazovskii S.A. JETP Lett., 1978, 28, P. 20.
6. Campbell D.K. and Bishop A.R. Solitons in polyacetylene and relativistic-field-theory models. Phys. Rev. B, 1981, 24, P. 8.
7. Campbell D.K. and Bishop A.R. Soliton Excitations in Polyacetylene and Relativistic Field Theory Models. Nuclear Physics B, 1982, 200[FS4], P. 297–328.
8. Horovitz B. Soliton Lattice in Polyacetylene. Spin-Peierls Systems, and Two-Dimensional Sine-Gordon Systems. Phys. Rev. Lett., 1981, 46, P. 11.
9. Horovitz B. The mixed peierls phase and metallic polyacetylene. Solid State Communications, 1980, 34, P. 61–64.
10. Horovitz B. Solitons in polyacetylene: A comment. Phys. Rev. B., 1980, 22, P. 2.
11. Krumhansl J.A., Horovitz B., and Heeger A.J. Amplitude solitons in incommensurate Peierls systems: Implications for TTF-TCNQ. Solid State Communications, 1980, 34, P. 945–948.
12. Wallace D.S., Stoneham A.M., Hayes W., Fisher A.J. and Testa A. Theory of defects in conducting polymers. II. Application to polyacetylene. J. Phys.: Condens. Matter, 1991, 3, P. 3905.
13. Fujii M., Ari K. and Yoshino K. Branching Patterns of a Conducting Polymer Polymerized Electrochemically with a ConstantCurrent Source, J. Electrochem. Soc., 1993, 140, P. 7.
14. Jurkiewicz J. and Krzywicki A. Branched polymers with loops. Phys. Lett. B, 1997, 392, P. 291–297.
15. Inoue K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci., 2000, 25, P. 453.
16. Dai L., Winkler B., Dong L., Tong L. and Mau A.W.H. Conjugated Polymers for LightEmitting Applications, Adv. Mater., 2001, 13, P. 12–13.
17. Wu D.T., Synth. Met.. Theory for conductivity in conducting star polymer blends, 2002, 126, P. 289.
18. Gao C. and Yan D. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci., 2004, 29, P. 183.
19. Hua F. and Ruckenstein E. Hyperbranched Sulfonated Polydiphenylamine as a Novel Self-Doped Conducting Polymer and Its pH Response. Macromolecules, 2005, 38, P. 888.
20. Ch. Wu, Malinin S.V., Tretiak S., Chernyak V.Y. Exciton scattering and localization in branched dendrimeric structures. Nature Physics, 2006, 2, P. 631–635.
21. Lee R.-H., Chen W.-Sh., and Wang Y.-Y. Synthesis and electroluminescence properties of a series of hyper-branched light-emitting polymers. Thin Solid Films, 2009, 517, P. 5747.
22. Hirao A. and Yoo H.-S. Dendrimer-like star-branched polymers: novel structurally well-defined hyperbranched polymers. Polymer J., 2011, 43, P. 2.
23. Hutchings L.R. Complex Branched Polymers for StructureProperty Correlation Studies: The Case for Temperature Gradient Interaction Chromatography Analysis. Macromolecules, 2012, 45, P. 5621.
24. Pan L., Yu G., Zhai D., et.al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. U.S.A., 2012, 109, P. 9287.
25. Li H., Malinin S.V., Tretiak S., and Chernyak V.Y. Effective tight-binding models for excitons in branched conjugated molecules. J. Chem. Phys., 2013, 139, P. 064109.
26. Ohshita J., Tominaga Y., Tanaka D., Mizumo T., Fujita Y., Kunugi Y. Synthesis and optical properties of organosiliconoligothiophene branched polymers. J. Org. Chem., 2013, 50, P. 736.
27. Otrokhov G.V., Morozova O.V., Vasileva I.S., Shumakovich G.P., Zaitseva E.A., Khlupova M.E., and Yaropolov A.I. Biocatalytic synthesis of conducting polymers and prospects for its application. Biochemistry, 2013, 78, P. 1539.
28. Goll M., Ruff A., Muks E., Goerigk F., Omiecienski B., Ruff I., Gonzalez-Cano R. C., Navarrete J. T. L., Delgado M. C. R. and Ludwigs S. Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization click-reactions. Beilstein J. Org. Chem., 2015, 11, P. 335.
29. Soganci T., Gumusay O., Soyleyici H. C., Ak M. Synthesis of highly branched conducting polymer architecture for electrochromic applications, Polymer, 2018, 134, P. 187.
30. Kostrykin R., Schrader R., Kirchhoffs rule for quantum wires. J. Phys. A: Math. Gen., 1999, 32, P. 595.
31. Kottos T. and Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Ann.Phys., 1999, 274(1), P. 76–124.
32. Kuchment P. Waves in Random Media, 2004, 14 P. S107.
33. Gnutzmann S. and Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv.Phys., 2006, 55(5-6), P. 527–625.
34. Exner P. and Kovarik H. Quantum waveguides. Springer, 2015.
35. Gnutzmann S., Keating J.P. and Piotet F. Eigenfunction statistics on quantum graphs. Ann.Phys., 2010, 325(12) P. 2595–2640.
36. Sobirov Z., Matrasulov D., Sabirov K., Sawada S., and Nakamura K. Integrable nonlinear Schrdinger equation on simple networks: Connection formula at vertices. Phys. Rev. E, 2010, 81, P. 066602.
37. Sobirov Z., Matrasulov D., Sawada S., and Nakamura K. Transport in simple networks described by an integrable discrete nonlinear Schrdinger equation. Phys.Rev.E, 2011, 84, P. 026609.
38. Adami R., Cacciapuoti C., Finco D., Noja D. Fast Solitons on Star Graphs. Rev.Math.Phys, 2011, 23, P. 4.
39. Sabirov K.K., Sobirov Z.A., Babajanov D., and Matrasulov D.U. Stationary nonlinear Schrodinger equation on simplest graphs.¨ Phys.Lett. A, 2013, 377, P. 860.
40. Caputo J.-G., Dutykh D. Nonlinear waves in networks: Model reduction for the sine-Gordon equation. Phys. Rev. E, 2014, 90, P. 022912.
41. Uecker H., Grieser D., Sobirov Z., Babajanov D. and Matrasulov D. Soliton transport in tubular networks: Transmission at vertices in the shrinking limit. Phys. Rev. E, 2015, 91, P. 023209.
42. Noja D. Nonlinear Schrodinger equation on graphs: recent results and open problems.¨ Philos. Trans. R. Soc. A, 2014, 372, P. 20130002.
43. Noja D., Pelinovsky D., and Shaikhova G. Bifurcations and stability of standing waves in the nonlinear Schrodinger equation on the tadpole¨ graph. Nonlinearity, 2015, 28, P. 2343.
44. Sobirov Z., Babajanov D., Matrasulov D., Nakamura K., and Uecker H. Sine-Gordon solitons in networks: Scattering and transmission at vertices, EPL, 2016, 115, P. 50002.
45. Sabirov K.K., Rakhmanov S., Matrasulov D. and Susanto H. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies. Phys.Lett. A, 2018, 382, P. 1092.
Review
For citations:
Sabirov K.K., Yusupov J.R., Matyokubov Kh.Sh. Dynamics of polarons in branched conducting polymers. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):183–188. https://doi.org/10.17586/2220-8054-2020-11-2-183-188