Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and characterisation of CZTSe bulk materials for thermoelectric applications

https://doi.org/10.17586/2220-8054-2020-11-2-195-204

Abstract

Quaternary Copper Zinc Tin Selenide (CZTSe) is a preferred candidate as an absorber layer in solar cells due to its non-toxicity and the abundancy of its constituents. This material also has thermoelectric properties suitable for solar thermal energy conversion and waste heat recovery. The preparation of bulk thermoelectric materials is a tedious, multistep task and requires considerable time and energy consumption for tuning of desired properties. Here one step solid state reaction has been used for synthesis of bulk CZTSe materials in five different ratios of elemental precursors: Cu, Zn, Sn and Se. Atomic Force Microscopy (AFM), X-Ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD) techniques have been used for structural and compositional analysis of the materials. AFM analysis shows significant difference in roughness parameters and grain size with respect to Cu/Zn variations. The XRD spectra of various samples show the formation of CZTSe materials. Raman spectra verifies absence of secondary phases. XPS analysis reveals constituent atoms display chemical valences of +1, +2, +4, and −1 for Cu, Zn, Sn, and Se, respectively. The stoichiometric sample, Cu2ZnSnSe4, exhibited the maximum power factor 0.30 mW·m−1K−2, having carrier concentration in the range of 1018 – 1019 cm−3 and resistivity in the range of 0.21 to 0.24 Ω·cm.

About the Author

Yogeshchandra Sharma
Department of Physics, Vivekananda Global University
India

Jaipur–303012, Rajasthan



References

1. Kush P., Deka S. Multifunctional copper-based quaternary chalcogenide semiconductors toward state-of-the-art energy applications. Chem. Nano Mat., 2019, 5 (4), P. 373–402.

2. Tanaka K., Oonuki M., Moritake N., Uchiki H. Cu2ZnSnS4 thin film solar cells prepared by Non-vacuum Processing. Sol. Energy Mater. Sol. Cells, 2009, 93, 583.

3. Guo Q., Ford G.M., et al. Fabrication of 7.2% Efficient CZTSSe Solar Cells using CZTS Nanocrystals. J. Am. Chem. Soc., 2010, 132, 17384.

4. Tsuji I., Shimodaira Y., et al. Novel Stannite-type Complex Sulfide Photocatalysts AI–Zn–AIV–S4 (AI = Cu and Ag; AIV = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation. Chem. Mater., 2010, 22, 1402.

5. Samanta L.K., Bhar G.C. Optical Nonlinearity of Some Stannite and Famatinite Crystals. Phys. Status Solidi A, 1977, 41, 331.

6. Chen S., Gong X.G., et al. Band Structure Engineering of Multinary Chalcogenide Topological Insulators. Phys. Rev. B, 2011, 83, 245202.

7. Fries T., Shapira Y., et al. Magnetic ordering of the antiferromagnet Cu2MnSnS4 from magnetization and neutron-scattering measurements. Phys. Rev. B, 1997, 56, 5424.

8. Nenert G., Palstra T.T.M. Magnetoelectric and Multiferroic Properties of Ternary Copper Chalcogenides Cu2MIIMIVS4. J. Phys.: Cond. Matter, 2009, 21, 176002.

9. Liu M.L., Huang F.Q., Chen L.D., Chen I.W. A wide-band-gap P-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se). Appl. Phys. Lett., 2009, 94, 202103.

10. Ibanez M., Cadavid D., et al. Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: The case of Stannite Cu2CdSnSe4. Chem. Mater., 2012, 24, 562.

11. Dong Y., Khabibullin A.R., et al. Synthesis, Transport properties, and Electronic Structure of Cu2CdSnTe4. Appl. Phys. Lett., 2014, 104, 252107.

12. Dong Y., Wang H., Nolas G.S. Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4. Phys. Status Solidi RRL, 2014, 8, 61.

13. Wang B., Xiang H., et al. Theoretical investigation on thermoelectric properties of Cu-based chalcopyrite compounds. Phys. Rev. B, 2017, 95, 035201.

14. Raju C., Falmbigl M., et al. Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4. AIP Adv., 2013, 3, 032106.

15. Yang H., Jauregui L.A., et al. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett., 2012, 12, 540.

16. Fan F.J., Wang Y.X., et al. Large-scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv. Mater., 2012, 24, 6158.

17. Liu M.L., Chen I.W., Huang F.Q., Chen L.D. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater., 2009, 21, 3808.

18. Iba´nez M., Cadavid D., et al. Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: The case of stannite˜ Cu2CdSnSe4. Chem. Mater., 2012, 24, 562.

19. Fan F.J., Yu B., et al. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. J. Am. Chem. Soc., 2011, 133, 15910.

20. Paul S., Gulyas I., et al. Carrier transport properties in a thin-film Cu2ZnSnSe4 solar cell. Thin Solid Films, 2019, 675, 103.

21. Zeier W.G., LaLonde A., et al. Influence of a nano phase segregation on the thermoelectric properties of the p-Type doped stannite compound Cu2+xZn1−xGeSe4. J. Am. Chem. Soc., 2012, 134, 7147.

22. Goto Y., Naito F., et al. Enhanced thermoelectric figure of merit in stannite-kuramite solid solutions Cu2+xFe1−xSnS4−y (x =0–1) with anisotropy lowering. Inorg. Chem., 2013, 52, 9861.

23. Dong Y., Wang H.S., Nolas G. Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4. Phys. Status Solidi RRL, 2014, 8, 61.

24. Chiang M.H., Fu Y.S., et al. Effects of Zn precursors on solvothermal synthesis of Cu2ZnSnSe4 nanocrystals. Mater. Lett., 2012, 83, 192.

25. Shi X., Xi L., et al. CuSe Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure. Chem. Mater., 2010, 22, 6029.

26. Cui Y., Deng R., Wang G., Pan D. A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. J. Mater. Chem., 2012, 22, 23136.

27. Du Y.F., Zhou W.H., et al. Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles. Mater. Sci. Semi. Proced., 2012, 15, 214.

28. Wei T., Qin Y., et al. Copper chalcogenide thermoelectric materials. Sci. China Mater., 2019, 62, 8.

29. Fan C.M., Regulacio M.D., et al. Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behaviour. Nanoscale, 2015, 7, 3247.

30. Wei K., Nolas G.S. Synthesis and Characterization of Nanostructured Stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for Thermoelectric Applications. ACS Appl. Mater. Interfaces, 2015, 7, 9752.

31. Xue D.J., Jiao F., et al. Synthesis of Wurtzite Cu2ZnGeSe4 Nanocrystals and their Thermoelectric Properties. Chem. – An Asian J., 2013, 8, 2383.

32. Shi X.Y., Huang F.Q., Liu M.L., Chen L.D. Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1xInxSe4. Appl. Phys. Lett., 2009, 94, 122103.

33. Chen D., Zhao Y., et al. Hot-Injection Synthesis of Cu-Doped Cu2ZnSnSe4 Nanocrystals to Reach Thermoelectric ZT of 0.70 at 450 ◦C. ACS Appl. Mater. Interfaces, 2015, 7 (44), 24403.

34. Ritchie C., Chesman A., Jasieniak J., Mulvaney P. Aqueous Synthesis of Cu2ZnSnSe4 Nanocrystals. Chem. Mater., 2019, 31 (6), 2138.

35. Zoppi G., Forbes I., et al. Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications, 2009, 17 (5), 315.

36. Fan P., Zhao J., et al. Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering. Journal of Alloys and Compounds, 2015, 625, 171.

37. Redinger A., Hones K., et al. Detection of a ZnSe secondary phase in coevaporated Cu¨ 2ZnSnSe4 thin films. Applied Physics Letters, 2011, 98 (10), 101907.

38. Gremenok V.F., Juskenas R., et al. Growth and properties of Cu2ZnSnSe4 films on flexible metallic substrates. Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, P. 1081.

39. Stanchik V., Gremenok V.F., et al. Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells. Sol. Ener., 2019, 178, 142.

40. Urazov K.A., Dergacheva M.B., Gremenok V.F., Mit K.A. AFM Investigation of CZTS and CZTSe thin films. Physics, Chemistry And Application Of Nanostructures: Reviews And Short Notes To Nanomeeting, 2017, 406.

41. Kumar B.R., Rao T.S. AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest Journal of Nanomaterials and Biostructures, 2012, 7 (4), 1881.

42. Sharma Y.C., Prajapat R. Study of mixing behaviour of Cu, Zn, Sn and Se multilayer structure by annealing. Mater. Res. Express, 2019, 6, 086418.

43. Li J., Ma T., et al. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route. Appl. Sur. Sci., 2012, 258, 6261.

44. Wibowo R.A., Kim W.S., et al. Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets. J. Phy. Chem. Sol., 2007, 68, 1908.

45. Farva U., Park C. Quaternary Chalcogenide Nanocrystals: Synthesis of Cu2ZnSnSe4 by Solid State Reaction and their Thermoelectric Properties. MRS Online Proceedings Library Archive, 2013, 1543, 137.

46. Bishop D.M., McCandless B.E., et al. Fabrication and electronic properties of CZTSe single crystals. IEEE Journal of Photovoltaics, 2015, 5, 390.

47. Wibowo R.A., Jung W.H., et al. Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders. Materials Chemistry and Physics, 2010, 124, 1006.

48. Wibowo R.A., Jung W.H., Kim K.H. Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders. J. Phy. Chem. Sol., 2010, 71, 1702.

49. Cure Y., Pouget S., Reita V., Boukari H. Cu´ 2ZnSnSe4 thin films grown by molecular beam epitaxy. Scripta Materialia, 2017, 130, 200.

50. Choubrac L., Lafond A., et al. The stability domain of the selenide kesterite photovoltaic materials and NMR investigation of the Cu/Zn disorder in Cu2ZnSnSe4 (CZTSe). Phys. Chem. Chem. Phys., 2015, 17, 15088.

51. Gurieva G., Levcenco S., et al. Investigation of Detection Limits of ZnSe and Cu2SnSe3 Secondary Phases in Cu2ZnSnSe4. Physica Status Solidi C, 2017, 14, 1700166.

52. Jagannath, Goutam U.K., et al. HAXPES beamline PES-BL14 at the Indus-2 synchrotron radiation source. J. Synchrotron Rad., 2018, 25, P. 1541–1547.


Review

For citations:


Sharma Y. Synthesis and characterisation of CZTSe bulk materials for thermoelectric applications. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):195–204. https://doi.org/10.17586/2220-8054-2020-11-2-195-204

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)