Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Cryometry and excess thermodynamic functions in water soluble of the fullerenol C60(OH)24

https://doi.org/10.17586/2220-8054-2020-11-2-205-213

Abstract

The temperature of water-ice crystallization initiation decreases (∆T) were determined in the binary water solutions of water soluble fullerenol:

C60(OH)24 H2O at 272.85–273.15 K. Solution concentrations (in molar fractions) vary over a wide range xnanocluster = 5.0 · 10−6 ÷

1.6 · 10−4 a.un. Liquidus temperatures were determined with the help of Beckman thermometer with a linear resolution of the device scale ∆T ≈ 0.01 K/mm (h – height of Hg capillary raising). For the thermodynamic description of the discussed systems, we have elaborated an ∆h original semi-empirical model, the virial decomposition asymmetric model (VD-AS), with assistance from partial molar functions of nano-clusters (activities and activity coefficients) were calculated. The Gibbs energies for the solutions and miscibility gap concentration regions were calculated. VD-AS model excellently describes pre-delamination or micro-heterogeneous-structure formation in the considered solutions. These calculations are confirmed by the dynamic light scattering data.

About the Authors

N. A. Charykov
St. Petersburg State Technological Institute (Technical University); St. Petersburg Electrotechnical University “LETI”
Russian Federation

Moskovsky prospect, 26 Saint-Petersburg, 190013

ul. Professora Popova 5, 197376 St. Petersburg



K. N. Semenov
St. Petersburg State Technological Institute (Technical University); St. Petersburg State University; Pavlov First Saint Petersburg State Medical University
Russian Federation

Moskovsky prospect, 26 Saint-Petersburg, 190013

7/9 Universitetskaya emb., Saint-Petersburg, 199034

L’va Tolstogo str. 6-8 Saint Petersburg, 197022



V. A. Keskinov
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint-Petersburg, 190013



V. A. Kulenova
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004



Z. K. Shaimardanov
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004



B. K. Shaimardanova
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004



L. V. Gerasimova
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint-Petersburg, 190013



Ayat Kanbar
St. Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint-Petersburg, 190013



D. G. Letenko
St. Petersburg State University of Architecture and Civil Engineering (SPSUACE)
Russian Federation

2-nd Krasnoarmeiskaya St. 4, 190005 St. Petersburg



References

1. Li J., Takeuchi A., Ozawa M. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem.Soc.Chem. Commun., 1993, 23, P. 1784.

2. Chiang L.Y., Bhonsle J.B., Wang L. et al. Efficient one-ask synthesis of water-soluble fullerenes. Tetrahedron, 1996, 52, P. 4963.

3. Chiang L.Y., Upasani R.B., Swirczewski J.W. Versatile nitronium chemistry for C60 fullerene functionalization. J.Am.Chem. Soc., 1992, 114, P. 10154.

4. Meier M.S., Kiegiel J. Preparation and characterization of the fullerene diols 1,2-C60(OH)2, 1,2-C70(OH)2, and 5,6-C70(OH)2. Org. Lett., 2001, 3, P. 1717.

5. Szymanska L., Radecka H., Radecki J. et al. Electrochemical impedance spectroscopy for study of amyloid-peptide interactions with (-) nicotine ditartrate and (-) cotinine. Biosens. Bioelectron, 2001, 16, P. 911.

6. Mirkov S.M., Djordjevic A.N., Andric N.L. et al. Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cyto-toxicity. Nitric Oxide, 2004, 11, P. 201.

7. Kokubo K., Matsubayashi K., Tategaki H. et al. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano, 2008, 2(2), P. 327.

8. Yang J.M., He W., Ping H. et al. The scavenging of reactive oxygen species and water soluble fullerene synthesis. Chinese. J. Chem., 2004, 22(9), P. 1008.

9. Sheng W., Ping H., Jian Min Z. et al. Novel and efficient synthesis of water-soluble [C60] fullerenol by solvent-free reaction. Synthetic Communications, 2005, 35(13), P. 1803.

10. Chiang Long Y. Fullerene Derivatives as Free Radical Scavengers. US patent 5648523. July 15, 1997.

11. Lamparth I., Hirsch A. Water-soluble malonic acid derivatives of C60 with a deffined three-dimensional structure J. Chem. Soc. Chem. Commun., 1994, P. 1727–1728.

12. Liang Bing GAN, Chu Ping LUO. Water-soluble fullerene derivatives, synthesis and characterization of alanine C60 adducts. Chinese Chemical letters, 1994, 5(4), P. 275278.

13. Kotelnikova R.A., Kotelnikov A.I., Bogdanov G.N., Romanova V.S., Kuleshova E.F., Parnes Z.N., Vol’pin M.E. Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60. FEBS Lett., 1996, 389, P. 111–114.

14. Hu Z., Guan W., Wang W., Huang L., Tang X., Xu H., Zhu Z., Xie X., Xing H. Synthesis of amphiphilic amino acid C60 derivatives and their protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Carbon, 2008, 46, P. 99–109.

15. Kumar A., Rao M.V., Menon S.K. Photoinduced DNA cleavage by fullerene-lysine conjugate. Tetrahedron Lett., 2009, 50, P. 6526–6530.

16. Jiang G., Yin F., Duan J., Li G. Synthesis and properties of novel water-soluble fullerene glycine derivatives as new materials for cancer therapy. J. Mater. Sci: Mater. Med, 2015, 26, P. 1–7.

17. Grigoriev V.V., Petrova L.N., Ivanova T.A., Kotel’nikova R.A., Bogdanov G.N., Poletayeva D.A., Faingold I.I., Mishchenko D.V., Romanova V. S., Kotel’nikov A.I., Bachurin S.O. Study of the neuroprotective action of hybrid structures based onfullerene C60. Biology Bull, 2011, 38, P. 125–131.

18. Kotel’nikova R.A., Faingol’d I.I., Poletaeva D.A., Mishchenko D.V., Romanova V.S., Shtol’ko V.N., Bogdanov G.N.,Rybkin A.Yu., Frog E.S., Smolina A.V., Kushch A.A., Fedorova N.E., Kotel’nikov A.I. Antioxidant properties of water-soluble amino acid derivatives of fullerenes and their role in the inhibition of herpes virus infection. Rus. Chem. Bull., 2011, 6, P. 1172–1176.

19. Leon A., Jalbout A.F., Basiuk V.A. Fullerene-amino acid interactions. A theoretical study. Chem. Phys. Lett., 2008, 452, P. 306314.

20. Hu Y.H., Ruckenstein E. Steam reforming products used as a hydrogen resource for hydrogen storage in Li2N. J. Mol. Struct. Theochem., 2008, 865, P. 94–97.

21. Semenov K.N., Charykov N.A., Postnov V.N., Sharoyko V.V., Murin I.V. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Rus. Chem. Rev., 2016, 85, P. 38–59.

22. Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-Chemical Properties of C6060-tris-malonic-derivative Water Solutions. J. of Molecular Liquids, 2015, 202, P. 50–58.

23. Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-chemical properties of the fullerenol-70 water solutions. J. of Molecular Liquids, 2015, 202, P. 1–8.

24. Nikolay A. Charykov, Konstantin N. Semenov, Enriqueta R. Lypez, Josefa Fernndezc, Evgeny B. Serebryakov, Viktor A. Keskinova, Igor V. Murin. Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. J. of Molecule Liquids, 2018, 256, P. 305–311.

25. Serebryakov E.B., Semenov K.N., Stepanyuk I.V., Charykov N.A., Mescheryakov A.N., Zhukov A.N., Alexey V. Chaplygin A.V., Murin I.V. Physico-chemical properties of the C70-L-lysine aqueous solutions. J. of Molecule Liquids, 2018, 256, P. 507–518.

26. Yur’ev G.O., Lelet M.I., Pochkayeva E.A., Petrov A.V., Semenov K.N., Charykov N.A., Podolskiy N.E., Dulneva L.L., Sharoyko V.V., Murin I.V., Thermodynamic and thermal properties of the C60-L-Arg derivative. J. Chem. Thermodynamics, 2018, 127, P. 39–44.

27. Podolsky N.E., Marcos M.A., Cabaleiro D., Semenov K.N., Luis Lugo, Petrov A.V., Charykov N.A., Sharoyko V.V., Vlasov T.D., Murin I.V. Physico-chemical properties of C60(OH)22-24 water solutions: density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. of Mol. Liq, 2019, 278, P. 342–355.

28. Podolsky N., Lelet M., Ageev S., Novikov A., Petrov A., Mazur A., Semenov K., Charykov N., Vasina L., Murin I. Thermodynamic properties from calorimetry and density functional theory and the thermogravimetric analysis of the fullerene derivative C60(OH)40. Journal of Chemical & Engineering Data, 2019, 64(4), P. 1480–1487.

29. Serebryakov E.B., Zakusilo D.N., Semenov K.N., Charyov N.A., Akentiev A.V., Noskov B.A., Petrov A.V., Podolsky N.E., Mazur A.S., Dul’neva L.V., Murin I.V. Physico-chemical properties of C70-l-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions. Journal of Molecular Liquids, 2019, 279, P. 687–699.

30. Petrenko V.V., Charykov N.A., Semenov K.N., Keskinov V.A., Kurilenko A.V., Semenyuk V.A., Saf’annikov N.M. Synthesis, Identification and Physical-Chemical Properties of Bis-Adduct of C60 with Histidine. Nanotechnology Science and Technology. Applied Aspects of Nanophysics and Nano-engineering, 2019, P. 1-6.

31. Semenyuk V.A., Semenov K.N., Charykov N.A., Keskinov V.A., Petrenko V.V., Kurilenko A.V., Saf’annikov N.M. Tris-Adduct of light Fullerene C70 with Indespensible Aminoacide Lysine. Nanotechnology Science and Technology. Applied Aspects Of Nanophysics and Nanoengineering, 2019, P. 7–12.

32. Nikolaev D.N., Podolsky N.E., Lelet M.I., Iamalova N.R., Shemchuk O.S., Ageev S.V., Petrov A.V., Semenov K.N., Charykov N.A., Piotrovskiy L.B., Murin I.V. Thermodynamic and quantum chemical investigation of the monocarboxylated fullerene C60CHCOOH. J. Chem. Thermodynamics, 2020, 140, P. 105898.

33. Matuzenko M.Yu., Shestopalova A.A., Semenov K.N., Charykov N.A., Keskinov V.A. Cryometry and excess functions of the adduct of light fullerene C60 and arginine C60(C6H12NAN4O2)8H8 aqueous solutions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(5), P. 715–725.

34. Matuzenko M.Yu., Tyurin D.P., Manyakina O.S., Semenov K.N., Charykov N.A., Ivanova K.V., Keskinov V.A. Cryometry and excess functions of fullerenols and trismalonates of light fullerenes C60(OH)22−24 and C70[=C(COOH)2]3, aqueous solutions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(4), P. 704–714.

35. Charykov N.A., Semenov K.N., Keskinov V.V., Garamova P.V., Tyurin D.P., Semenyuk I.V., Petrenko V.V., Kurilenko V.V., Matuzenko M.Yu., Kulenova N.A., Zolotarev A.A., Letenko D.G. Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids – lysine, threonine, oxyproline. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 397–405.

36. Safyannikov N.M., Charykov N.A., Garamova P.V., Semenov K.N., Keskinov V.A., Kurilenko A.V., Cherepcova I.A., Tyurin D.P., Klepikov V.V., Matuzenko M.Yu., Kulenova N.A., Zolotarev A.A. Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids – lysine, threonine, oxyproline. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 46–49.

37. Charykov N.A., Semenov K.N., Lypez E.R., Fernndez J., Serebryakov E.B., Keskinov V.A., Murin I.V. Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. J. of Molecule Liquids, 2018, 256, P. 305–311.

38. Semenov K.N., Kurilenko A.V., Charykov N.A., Keskinov V.A., Vorob’ev A.L., Shaimardanov Zh.K., Kulenova N.A., Onalbaeva Zh.S., and Letenko D.G. Solubility, Thermal analysis and association of bis-adducts of light fullerene C60 and amino-acids: lysine, threonine and oxyproline in water solutions. Russian Journal of Physical Chemistry A, 2019, 93(7), P. 1258–1265.

39. Pitzer K.S., Pitzer K.S. J.Phys.Chem., 1973, 77(2), P. 268–277.

40. Pitzer K.S., Kim J.J. Activity and osmotic coefficients for mixed electrolytes. J.Amer.Chem.Soc., 1974, 96(28), P. 5701–5707.

41. Filippov V.K., Charykov N.A., Rumyantsev A.V. The generalization of Pitzer’s method on the system with complex formation in the solutions. Rep. Rus. Acad. Sciences. Seria: Physics-Chemistry, 1987, 296(3), P. 665–668.

42. Carykova M.V., Charykov N.A. Thermodynamic modeling of evaporate sedimentation processes. SPb: Nauka, 2003, 257 p.

43. Charykov N.A., Litvak A.M., Mikhailova M.P., Moiseev K.D., Yakovlev Yu.P. Solid solution InxGa1−xAs ySbzP1−y−z. New material of IR opto-electronics. I. Thermodynamic analysis of production conditions for solid solutions, iso-periodic to the substrates InAs and GaSb, by liquid phase epitaxy method. Rus. Phys. and Tech. Semic., 1997, 31(4), P. 410–415.

44. Litvak A.M., Charykov N.A. New thermodynamic method of calculation of melt-solid phase equilibria (for the example of A3B5 systems). Rus.J.Phys.Chem., 1990, 64(9), P. 2331–2335.

45. Litvak A.M., Moiseev K.D., Charykov N.A., Yakovlev Yu.P. Hetero-structures InlxGa1−xAsySb1−y/InAs production by LPE method. Rus. Tech. Phys. Lett., 1990, 16(13), P. 41-45.

46. Baranov A.N., Guseinov A.A., Litvak A.M., Popov A.A., Charykov N.A., Sherstnev V.C., Yakovlev Yu.P. Production of solid solutions InxGa1−xAsySb1−y, iso-periodic to GaSb, nearby miscibility gap. Rus. Tech. Phys. Lett., 1990, 16(5), P. 33–38.

47. Stringfellow G.B. Calculation of energy band gaps in quaternary III-IV alloys. J.Elecrctron. Mat., 1981, 10(5), P. 919–936.

48. Stringfellow G.B. Calculation of ternary and quaternary III-V phase diagrams. J.Cryst.Growth, 1982, 58, P. 194–202.

49. Litvak A.M., Charykov N.A. Melt-solid phase equilibria in the system Pb-InAs-InSb. Rus.J.Neorg.Chem., 1990, 35(12), P. 3059–3062.


Review

For citations:


Charykov N.A., Semenov K.N., Keskinov V.A., Kulenova V.A., Shaimardanov Z.K., Shaimardanova B.K., Gerasimova L.V., Kanbar A., Letenko D.G. Cryometry and excess thermodynamic functions in water soluble of the fullerenol C60(OH)24. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):205–213. https://doi.org/10.17586/2220-8054-2020-11-2-205-213

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)