Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis, characterization and concentration dependant antibacterial potentials of nickel oxide nanoparticles against Staphylococcus aureus and Escherichia coli

https://doi.org/10.17586/2220-8054-2020-11-2-237-245

Abstract

Bacterial resistance to antibiotic treatment is a major emerging clinical and public health issue across the globe. Advancements in the field of metal oxide nanomaterials in the last few years have improved the potential of metal oxides in different applications. Metal oxides, of which, nickel oxide (NiO) is one, also possess antibacterial activities. This investigation was planned to synthesize NiO nanoparticles to study their antibacterial potential in comparison with bulk NiO and standard antibiotics at different concentrations. Synthesis and characterization of NiO nanoparticles was done by standard procedures. The antibacterial potentials of different compounds were determined at different concentrations against S. aureus and E. coli. The diameter of zone of inhibition showed that the antibacterial effect of NiO nanoparticles against S. aureus was better than E. coli at the same concentration. The concentration-dependent effect of NiO nanoparticles was observed from 0.125 to 128 µg/ml. The effect of NiO nanoparticles was markedly better than bulk NiO at all concentrations. Tetracycline and gentamicin did not show effect below 1.0 µg/ml and 2.0 µg/ml, respectively. The activity index and fold increase of NiO nanoparticles were both higher than 1 and positive, with respect to tetracycline, gentamicin and bulk NiO against S. aureus and E. coli at all the tested concentrations. In conclusion, the NiO nanoparticles seemed to be a more potent antibacterial agent than their bulk form, tetracycline and gentamicin, and in future, their applications may be extended in biomedical field and other areas to reduce microbial infections and incidences of antibacterial resistance.

About the Authors

V. Gupta
Department of Chemistry, University of Jammu
India

J&K



V. Kant
Division of Pharmacology & Toxicology, IVRI
India

Bareilly, UP



A. Gupta
Department of Physics, University of Jammu
India

J&K



M. Sharma
Department of Chemistry, University of Jammu
India

J&K



References

1. Hawkey P.M. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother., 2008, 62, P. i1–i9.

2. Livermore D.M. The 2018 Garrod lecture: Preparing for the black swans of resistance. J. Antimicrob. Chemother., 2018, 73, P. 2907–2915.

3. Sugden R., Kelly R., Davies S. Combatting antimicrobial resistance globally. Nat. Microbiol., 2016, 1, P. 16187.

4. O’Neill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Rev. Antimicrob. Re., 2014.

5. Galib M., Barve M., Mashru C, Jagtap B.J., Patgiri P.K., Prajapati. Therapeutic potentials of metals in ancient India: A review through Charaka Samhita. J. Ayurveda Integr. Med., 2011, 2, P. 55.

6. Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Adnan Memic. Antimicrobial activity of metal oxide nanoparticles against Grampositive and Gram-negative bacteria: a comparative study. Int. J. Nanomed., 2012, 7, P. 6003–6009.

7. Bhushan M., Kumar Y, Periyasamy L., Viswanath A.K. Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics. App. Nanosci., 2018, 8, P. 137–153.

8. Ebadi M., Zolfaghari M.R., Aghaei S.S., Zargar M., Shafiei M., Zahiri H.S., Noghabi K.A. A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium Nostoc sp. EA03: from biological function to toxicity evaluation. RSC Adv., 2019, 9, P. 23508.

9. Khadar Y.A.S., Balamurugan A., Devarajan V.P., Subramanian R., Kumar S.D. Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2:Co) nanoparticles by using hydrothermal method. J. Mater. Res. Technol., 2 0 1 9, 8(1), P. 267–274.

10. Parham S., Wicaksono D.H.B., Bagherbaigi S., Lee S.L., Nur H. Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J. Chin. Chem. Soc., 2016, 63, P. 385–393.

11. Gupta V., Kant V., Sharma A.K., Sharma M. Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: A concentration dependant study. Nanosyst. Phys. Chem. Math., 2020, 11(1), P. 78–85.

12. Preethika R.K., Ramya R., Ganesan M., Nagaraj S., Pandian K. Synthesis and characterization of neomycin functionalized chitosan stabilized silver nanoparticles and study its antimicrobial activity. Nanosyst. Phys. Chem. Math., 2016, 7(4), P. 759–764.

13. Deraz N.M., Selim M.M., Ramadan M. Processing and properties of nanocrystalline Ni and NiO catalysts. Mater. Chem. Phys., 2009, 113, P. 269–275.

14. Meyer M., Albrecht-Gary A.M., Dietrich-Buchecker C.O., Sauvage J.P. Dicopper(I) trefoil knots: Topological and structural effects on the demetalation rates and mechanism. J. Am. Chem. Soc., 1997, 119, P. 4599–4607.

15. Li Y.G., Shi D.H., Zhu H.L., Yan H., Ng S.W. Transition metal complexes (M=Cu, Ni and Mn) of Schiff-base ligands: syntheses, crystal structures, and inhibitory bioactivities against urease and xanthine oxidase. Inorg. Chim. Acta., 2007, 360(9), P. 2881–2889.

16. Perez C., Pauli M., Bazerque P. An antibiotic assay by agar-well diffusion method. Acta Biol. Med. Exp., 1990, 15, P. 113–115.

17. Rizwan W., Young-Soon K., Amrita M., Soon-II Y., Hyung-Shik S. Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett., 2010, 5, P. 1675–1681.

18. Yoon K.Y., Byeon J.H., Park J.H., Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 2007, 373, P. 572–575.

19. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 2008, 4, P. 707–716.

20. Mazumder A., Davis J., Rangari V., Curry M. Synthesis, characterization, and applications of dendrimer-encapsulated zero-valent Ni nanoparticles as antimicrobial agents. Nanomater., 2013,Article ID 843709, 9 pages.

21. Khalil A.T., Ovais M., Ullah I., Ali M., Shinwari Z.K., Hassan D., Maaza M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Blood Substit. Biotechnol., 2018, 46(4), P. 838–852.

22. Srihasam S., Thyagarajan K., Korivi M., Lebaka V.R., Mallem S.P.R. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules, 2020, 10, P. 89.

23. Helan V., Prince J.J., Al-Dhabi N.A., Arasu M.V., Ayeshamariam A., Madhumitha G., Roopan S.M., Jayachandran M.. Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys., 2016, 6, P. 712–718.

24. Abbasi B.A., Iqbal J., Mahmood T., Ahmad R., Kanwal S., Afridi S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Mater. Res. Express, 2019, 6, P. 0850a7.

25. Bhat S.A., Zafar F., Mondal A.H., Kareem A., Mirza A.U., Khan S., Mohammad A., Haq Q.R., Nishat N. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J. Iran. Chem. Soc., 2019.

26. Ahamed M., Alhadlaq H.A., Khan M.M.A., Karuppiah P., Al-Dhabi N.A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater., 2014, Article ID 637858, 4 pages.

27. Hoseinzadeh E., Makhdoumi P., Taha P., Hossini H., Stelling J., Kamal M.A., Ashraf G.M. A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Curr. Drug Metab., 2017, 18(2), P. 120–128.

28. Djurisic A.B., Leung Y.H., Ng A.M., Xu X.Y., Lee P.K., Degger N., Wu R.S. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small, 2015, 11(1), P. 26–44.

29. Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18, P. 6679– 6686.

30. Rakshit S., Ghosh S., Chall S., Mati S.S., Moulik S.P., Bhattacharya S.C. Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: A cost effective and eco friendly approach. RSC Adv., 2013, 3, P. 19348–19356.

31. Helen S.M., Rani H.E. Characterization and antimicrobial study of nickel nanoparticles synthesized from Dioscorea (elephant yam) by green route. Int. J. Sci. Res., 2015, 4, P. 216–219.

32. Ayeshamariam A., Sankaracharyulu G.V., Kashif M., Hussain S., Bououdina M., Jayachandran M. Antibacterial activity studies of Ni and SnO2 loaded Chitosan beads. Mater. Sci. Forum, 2015, 833, P. 110–112.

33. Jesudoss S.K., Vijaya J.J., Clament N., Selvam S., Kombaiah K., Sivachidambaram M., Adinaveen T., Kennedy L.J. Effects of Ba doping on structural, morphological, optical, and photocatalytic properties of self-assembled ZnO nanosphere. Clean Technol. Environ. Policy, 2016, 18, P. 729–741.

34. Basak G., Das D., Das N. Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticles synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans, J. Microbiol. Biotechnol., 2014, 24, P. 87–96.

35. Burello E., Worth A.P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology, 2011, 5, P. 228–235.

36. Robison S.H., Cantoni O., Heck J.D., Costa M. Soluble and insoluble nickel compounds induce DNA repair synthesis in cultured mammalian cells. Cancer Lett., 1983, 17(3), P. 273–279.

37. Oller A.R. Respiratory carcinogenecity assessment of soluble nickel compounds. Environ. Health Perspect., 2002, 110(5), P. 841–844.

38. Schwerdtle T., Hartwig A. Bioavailability and genotoxicity of soluble and particulate nickel compounds in cultured human lung cells. Materwiss. Werksttech., 2006, 37(6), P. 521–525.

39. Jan T., Iqbal J., Ismail M., Badshah N., Mansoor Q., Arshad A., Ahkam Q. Synthesis, physical properties and antibacterial activity of metal oxides nanostructures. Mat. Sci. Semicon. Proc., 2014, 21, P. 154–160.

40. Kalyani R.L., Venkatraju J., Kollu P., Rao N.H., Pammi S.V.N. Low temperature synthesis of various transition metal oxides and their antibacterial activity against multidrug resistance bacterial pathogens. Korean J. Chem. Eng., 2015, 32(5), P. 911–916.

41. Huh A.J., Kwon Y.J. Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), P. 128–145.

42. Ling D., Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 2013, 9, P. 1450–1466.

43. Mahapatra O., Bhagat M., Gopalakrishnan C., Arunachalam K.D. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J. Exp. Nanosci., 2008, 3, P. 185–193.

44. Selvarani M., Prema P. Evaluation of antibacterial efficacy of chemically synthesized copper and zerovalent iron nanoparticles. Asian J. Pharm. Clin. Res., 2013, 6, P. 223–227.

45. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects forthe future. Int. J. Nanomed., 2017, 12, P. 1227.

46. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. Antimicrobial effects of silver nanoparticles. Nanomed., 2007, 3, P. 95–101.

47. Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interf. Sci., 2004, 275, P. 177–182.

48. Jain P., Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 2005, 90, P. 59–63.

49. Deravi L.F., Swartz J.D., Wright D.W. The biomimetic synthesis of metal oxide nanomaterials. Wiley, 2010.


Review

For citations:


Gupta V., Kant V., Gupta A., Sharma M. Synthesis, characterization and concentration dependant antibacterial potentials of nickel oxide nanoparticles against Staphylococcus aureus and Escherichia coli. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):237–245. https://doi.org/10.17586/2220-8054-2020-11-2-237-245

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)