Influence of hydrothermal synthesis conditions on the composition of the pyrochlore phase in the Bi2O3–Fe2O3–WO3 system
https://doi.org/10.17586/2220-8054-2020-11-2-246-251
Abstract
The paper deals with a study of the effect which the hydrothermal fluid pH has on the formation of a pyrochlore-structured phase in the Bi2O3– Fe2O3–WO3 system. It was shown that at pH of 1 and 8, the formation of pyrochlore-structured phase particles with crystallite sizes of 38 and 118 nm, respectively, is accompanied by the formation of the Bi2WO6 compound with the Aurivillius phase structure. At pH values from 2 to 7, only pyrochlore-structured nanocrystalline particles with a variable composition are formed. Under these conditions, the dependence of the average size of crystallites of the pyrochlore-structured phase particles on pH is extreme, as the size increases from ∼ 67 nm at pH 2 up to ∼ 126 nm at pH 5 and then decreases to ∼ 102 nm at pH 7. The samples obtained at pH 3–4 have a composition that is the closest to that specified for the synthesis.
When pH increases up to 10, there forms a non-single-phase product that contains the Bi2WO6 phase and δ-Bi2O3-based phase.
About the Authors
M. S. LomakinRussian Federation
26, Politekhnicheskaya St., 194021, St. Petersburg
26, Moskovsky pr, 190013, St. Petersburg
O. V. Proskurina
Russian Federation
26, Politekhnicheskaya St., 194021, St. Petersburg
26, Moskovsky pr, 190013, St. Petersburg
V. V. Gusarov
Russian Federation
26, Politekhnicheskaya St., 194021, St. Petersburg
References
1. Almjasheva O.V., Smirnov A.V., Fedorov B.A., Tomkovich M.V., Gusarov V.V. Structural features of ZrO2–Y2O3 and ZrO2–Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84(5), P. 804–809.
2. Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO3 nanoparticles under the hydrothermal condition. Nanosyst.:Phys. Chem. Math., 2014, 5(5), P. 703–708.
3. Almjasheva O.V., Gusarov V.V. Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO2-Al2O3-H2O system. Russ. J. Inorg. Chem., 2007, 52(8), P. 1194–1200.
4. Al’myasheva O.V., Korytkova E.N., Maslov A.V., Gusarov V.V. Preparation of Nanocrystalline Alumina under Hydrothermal Conditions. Inorg. Mater., 2005, 41(5), P. 460–467.
5. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 Nanocrystals in Hydrothermal Media of Various Chemical Compositions. Russ. J. Gen. Chem., 2002, 72(6), P. 849–853.
6. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by condition of hydrothermal synthesis. Russ. J. Gen. Chem., 1999, 69(8), P. 1219–1222.
7. Kuznetsova V.A., Almjasheva O.V., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Phys. Chem., 2009, 35(2), P. 205–209.
8. Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of Nanocrystalline BiFeO3 under Hydrothermal Conditions. Russ. J. Gen. Chem., 2017, 87(11), P. 2507–2515.
9. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosyst.: Phys. Chem. Math., 2018, 9(4), P. 568–572.
10. Krasilin A.A. Khrapova E.K. Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology. Russ. J. Appl. Chem., 2017, 90(1), P. 22–27.
11. Wang Y., Zhang S., Zhong Q., Zeng Y., Ou M., Cai W. Hydrothermal Synthesis of Novel Uniform Nanooctahedral Bi3(FeO4)(WO4)2 Solid Oxide and Visible-Light Photocatalytic Performance. Ind. Eng. Chem. Res., 2016, 55(49), P. 12539–12546.
12. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosyst.: Phys. Chem. Math., 2013, 4(6), P. 810–815.
13. Almjasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosyst.: Phys. Chem. Math., 2019, 10(4), P. 428–437.
14. Matveichuk Yu.V. FTIR-spectroscopic investigation of sodium tungstate and sodium molybdate solutions in wide range of H. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2017, 60(1), P. 56–63.
15. Cornell R. M., Giovanoli R., Schneider W. Review of the hydrolysis of iron (III) and the crystallization of amorphous iron (III) hydroxide hydrate. J. Chem. Tech. Biotechnol., 1989, 46, P. 115–134.
16. Yukhin Yu.M., Mikhailov Yu.I. Chemistry of bismuth compounds and materials. SB RAS Publishing House, Novosibirsk, 2001, 360 p.
17. Lomakin M.S., Proskurina O.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Hydrothermal Synthesis, Phase Formation and Crystal Chemistry of the pyrochlore/Bi2WO6 and pyrochlore/α-Fe2O3 Composites in the Bi2O3-Fe2O3-WO3 System. J. Solid State Chem., 2020, 282, 121064.
Review
For citations:
Lomakin M.S., Proskurina O.V., Gusarov V.V. Influence of hydrothermal synthesis conditions on the composition of the pyrochlore phase in the Bi2O3–Fe2O3–WO3 system. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2):246–251. https://doi.org/10.17586/2220-8054-2020-11-2-246-251