Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Изготовление сверхвысокочувствительного газового сенсора, работающего при комнатной температуре, на основе мезопористых наночастиц WO3, легированных никелем

https://doi.org/10.17586/2220-8054-2021-12-3-291-302

Аннотация

В работе сообщается о сверхвысокочувствительном датчике газа при комнатной температуры на основе наночастиц WO3, легированных никелем (далее НЧ). Синтез чистых и легированных никелем НЧ WO3 осуществлялся методом осаждения. Рентгенофазовые исследования выявили поликристаллическую моноклинную структуру полученных образцов с преимущественной ориентацией роста вдоль кристаллической плоскости (002). Был проведен анализ с помощью SEM и FE-SEM, и микрофотографии показали, что синтезированные образцы имеют высокопористую структуру с превосходной диспергируемостью. Успешное внедрение ионов Ni2+ в решетку WO3 было подтверждено анализом РФЭС. Значительно улучшенные характеристики обнаружения газа WO3 при комнатной температуре за счет легирования Ni также изучались с использованием высокочувствительного электрометра. По сравнению с нелегированным WO3, датчик WO3, легированный 3 мол. % Ni, показал почти в 20 раз большую чувствительность (2641–200 ppm аммиака при комнатной температуре) с быстрым временем отклика/восстановления 40/97 с.

Об авторах

M. S. Duraisami
PG & Research Department of Physics, Poompuhar College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli)
Индия


D. Benny Anburaj
PG & Research Department of Physics, D. G. Govt. Arts College (Affiliated to Bharathidasan University, Tiruchirappalli)
Индия


K. Parasuraman
PG & Research Department of Physics, Poompuhar College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli)
Индия


Список литературы

1. Soni V., Singh P., Shree V., Goel V. (2018) Effects of VOCs on Human Health. In: Sharma N., Agarwal A., Eastwood P., Gupta T., Singh A. (eds) Air Pollution and Control. Energy, Environment, and Sustainability, Springer, Singapore, 2018, P. 119–142.

2. Hahn Y.B., Ahmad R., Tripathy N. Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun., 2012, 48, P. 10369–10385.

3. Wu C.H., Zhu Z., Huang S.Y., Wu R.J. Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J. Alloys Compd., 2019, 776, P. 965–73.

4. Gu F., Cui Y., et al. Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ., 2019, 256, P. 117809.

5. Wang Z., Chiu H.C., et al. Lithium Photo-intercalation of CdS-SensitizedWO3 anode for energy storage and photoelectrochromic applications. Chem. Sus. Chem., 2019, 12, P. 2220–30.

6. Wang C., Yin L., et al. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors, 2010, 10, P. 2088–2106.

7. Duraisami M.S., Parasuraman K. High sensitive room temperature ammonia sensor based on dopant free m-WO3 nanoparticles: Effect of calcination temperature. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11, P. 578–589.

8. Liu X., Zhang J., et al. Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties. Sensors and Actuators B: Chemical, 2011, 156, P. 918–923.

9. Qi J., Chen K., et al. Application of 3D hierarchical monoclinic-type structural Sb-dopedWO3 towards NO2 gas detection at low temperature. Nanoscale, 2018, 10, P. 7440–7450.

10. Chen L., Tsang S.C. Ag doped WO3-based powder sensor for the detection of NO gas in air. Sensors and Actuators B: Chemical, 2003, 89, P. 68–75.

11. Li F., Ruan S., et al. Synthesis and characterization of Cr-doped WO3 nanofibers for conductometric sensors with high xylene sensitivity. Sensors and Actuators B: Chemical, 2018, 265, P. 355–364.

12. Xiang Q., Meng G.F., et al. Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing. The Journal of Physical Chemistry C, 2010, 114, P. 2049–2055.

13. Faisal Mehmood, Javed Iqbal, Ismail M., Arshad Mehmood. Ni doped WO3 nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. Journal of Alloys and Compounds, 2018, 746, P. 729–738.

14. Gattu K.P., Ghule K., et al. Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC Adv., 2015, 5, P. 72849.

15. Delichere P., Falaras P., Froment M., Goff A.H.L. Electrochromism in anodic WO3 films I: preparation and physicochemical properties of films in the virgin and coloured states. Thin Solid Films, 1988, 35, P. 161.

16. Abhudhahir M.H.S., Kandasamy J. Photocatalytic effect of manganese doped WO3 and the effect of dopants on degradation of methylene blue. J. Mater. Sci.: Mater. Electron., 2015, 26, P. 8307–8314.

17. Zhou J., Wei Y., et al. Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. Journal of Materials Chemistry C, 2016, 4, P. 1613–1622.

18. Wang Y., Liu B., et al. Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl. Mater. Interfaces, 2016, 8, P. 9674–9683.

19. Dakhel A.A., Ashoor H. Synthesis of semi ferromagnetic Ni doped WO3 nanoparticles by precipitation method: evaluation of effect of treatment in hydrogen gas. Mater. Chem. Phys., 2019, 230, P. 172–177.

20. Grosvenor A.P., Biesinger M.C., Smart R.St.C., McIntyre N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci., 2006, 600, P. 1771–1779.

21. Bai S., et al. Gas sensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method. J. Mater. Chem. A, 2014, 2, P. 16697–16706.

22. Lee Y.A., et al. Highly sensitive gasochromic H2 sensing by nano-columnar WO3–Pd films with surface moisture. Sens. Actuators B, 2017, 238, P. 111–119.

23. Tong M., et al. Facile preparation of amorphous carbon-coated tungsten trioxide containing oxygen vacancies as photocatalysts for dye degradation. J. Mater. Sci., 2019, 54, P. 10656–10669.

24. Ta T.K.H., et al. Surface functionalization ofWO3 thin films with (3-Aminopropyl) triethoxysilane and succinic anhydride. J. Electron. Mater., 2017, 46, P. 3345–3352.

25. Vuong N.M., Kim D., Kim H. Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci. Rep., 2015, 5, P. 11040.

26. Kwangyeol Lee, Won Seok Seo, Joon T. Park. Synthesis and Optical Properties of Colloidal Tungsten Oxide Nanorods. J. Am. Chem. Soc., 2003, 125, P. 3408–3409.

27. Nayak A.K., Ghosh R., et al. Hierarchical Nanostructured WO3–SnO2 for Selective Sensing of Volatile Organic Compounds. Nanoscale, 2015, 7, P. 12460–12473.

28. Mani G.K., Rayappan J.B.B. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sensors Actuators, B Chem., 2013, 183, P. 459–466.

29. Yongjiao Sun, Lin Chen, et al. Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J. Mater. Sci., 2017, 52, P. 1561–1572.

30. Shukla S.K., Singh N.B., Rastogi R.P. Efficient ammonia sensing over zinc oxide/polyaniline nanocomposite. Indian J. Eng. Mater. Sci., 2013, 20, P. 319–324.

31. Haixin Liu, Wenhao Shen, Xiaoquan Chen. A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv., 2019, 9, P. 24519–24526.

32. Wagh M.S., Jain G.H., et al. Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators B Chem., 2006, 115, P. 128–133.

33. Patil L.A., Sonawane L.S., Patil D.G. Room temperature ammonia gas sensing using MnO2-modified ZnO thick film resistors. J. Mod. Phys., 2011, 2, P. 1215–1221.

34. Yi Z., Zheng L., et al. Enhanced ammonia sensing performances of Pd–sensitized flowerlike ZnO nanostructure. Sens. Actuators B Chem., 2011, 156, P. 395–400.


Рецензия

Для цитирования:


Duraisami M.S., Benny Anburaj D., Parasuraman K. Изготовление сверхвысокочувствительного газового сенсора, работающего при комнатной температуре, на основе мезопористых наночастиц WO3, легированных никелем. Наносистемы: физика, химия, математика. 2021;12(3):291-302. https://doi.org/10.17586/2220-8054-2021-12-3-291-302

For citation:


Duraisami M.S., Benny Anburaj D., Parasuraman K. Fabrication of room temperature operated ultra high sensitive gas sensor based on mesoporous Ni doped WO3 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):291-302. https://doi.org/10.17586/2220-8054-2021-12-3-291-302

Просмотров: 93


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)