Topological properties of some nanostructures
https://doi.org/10.17586/2220-8054-2020-11-1-14-24
Abstract
Topological indices are numerical values associated with chemical constitution describing the structures of chemical compounds and helping to predict different physicochemical properties. In this report, some newly designed topological descriptors, namely, neighborhood Zagreb index (MN), neighborhood version of Forgotten topological index (FN), modified neighborhood version of Forgotten topological index (FN∗ ), neighborhood version of second Zagreb index (), neighborhood version of hyper Zagreb index (HMN) are obtained for the TURC4C8(S), armchair nanotube TUAC6, V-phenylenic nanotube V PHX[m,n], and V-phenylenic nanotori V PHY [m,n].
Keywords
About the Authors
S. MondalIndia
A. Bhosale
India
N. De
India
Kolkata
A. Pal
India
NIT Durgapur
References
1. Trinajstic N.´ Chemical Graph Theory. CRC Press, Boca Raton, 1983.
2. Gutman I. Polansky O.E. Mathematical Concepts in Organic Chemistry. Springer, Berlin, 1986.
3. Diudea M.V., Gutman I., Lorentz J. Molecular Topology. Romania: Babes-Bolyai University, 2001.
4. Gutman I. Degreebased topological indices. Croat. Chem. Acta, 2013, 86 (4), P. 351–361.
5. Gutman I., Trinajstic N. Graph theory and molecular orbitals.Total´ π-electron energy of alternate hydrocarbons. Chem. Phys. Lett., 1972, 17, P. 535—538.
6. Gutman I., Das K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004, 50, P. 83–92.
7. Furtula B., Gutman I. A forgotten topological index. J. Math. Chem., 2015, 53 (4), P. 1184–1190.
8. Shirdel G.H., Rezapour H., Sayadi A.M. The hyper Zagreb index of graph operations. Iran. J. Math. Chem., 2013, 4 (2), P. 213–220.
9. Mondal S., De N., Pal A. On neighbourhood zagreb index of product graphs. arXiv:1805.05273, 2018.
10. Mondal S., De N., Pal A. On some new neighbourhood degree based indices. Acta Chemica Iasi, 2019, 27 (1), P. 31–46.
11. Gao Y.Y., Sardar M.S., Hosamani S.M., Farahani M.R. Computing sanskruti index of TURC4C8(s) nanotube. Int. J. Pharm. Sci. Res., 2017, 8 (10), P. 4423–4425.
12. Jiang H., Sardar M.S., et al. Computing sanskruti index V-phenylenic nanotube and nanotori. Int. J. Pure Appl. Math., 2017, 115 (4), P. 859– 865.
13. Farahani M.R. Computing GA5 index of armchair polyhex nanotube. Le Matematiche, 2014, LXIX, P. 69–76.
14. Mondal S., De N., Pal A. On Some New Neighborhood Degree-Based Indices for Some Oxide and Silicate Networks. J. Multidisciplinary Scientific Journal, 2019, 2 (3), P. 384–409.
15. Kawun Y.C., Munir M., et al. Computational Analysis of topological indices of two Boron Nanotubes. Scientific Reports, 2018, 8 (1), 14843.
16. Kawun Y.C., Munir M., et al. M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Scientific Reports, 2017, 7 (1), 8756.
17. Farahani M. R. On the fourth atom bond connectivity index of armchair polyhex nanotube. Proc. Rom. Acad., Series B, 2013, 15 (1), P. 3–6.
18. Ashrafi A.R., Doslic T., Saheli M. The eccentric connectivity index of TUC4C8(R) nanotubes. MATCH Commun. Math. Comput. Chem., 2011, 65, P. 221–230.
19. Farahani M.R. Fifth Geometric-Arithmetic Index of TURC4C8(S) Nanotubes. J. Chem. Acta, 2013, 2 (1), P. 62–64.
20. De N., Nayeem S.M.A. Computing the F-index of nanostar dendrimers. Pacific Science Review A: Natural Science and Engineering, 2016, 10.1016/j.psra.2016.06.001.
21. Gao W., Siddiqui M.K. Molecular Descriptors of Nanotube, Oxide, Silicate, and Triangulene Networks. J. Chem., 2017, 6540754.
Review
For citations:
Mondal S., Bhosale A., De N., Pal A. Topological properties of some nanostructures. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):14–24. https://doi.org/10.17586/2220-8054-2020-11-1-14-24