Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The Lagrange variety approach applied to frustrated classical wheels

https://doi.org/10.17586/2220-8054-2020-11-1-30-35

Abstract

The Lagrange variety approach introduced by Schmidt and Luban [J. Phys. A: Math. Gen. 36, 6351 (2003)] is applied to geometrically frustrated wheels (centered regular polygons). It is shown that the lowest energy configurations are planar or collinear. The latter one, characteristic for nonfrustrated classical systems, is also observed in the presence of competing interactions in a well-determined range (0c) of the energy function parameter α. The ‘critical’ value αc = 1/4 is universal, i.e., it does not depend on a system size. In this domain, the geometric frustration is present, but there is no non-trivial degeneracy.

About the Authors

W. Florek
Adam Mickiewicz University, Faculty of Physics
Poland

ul. Uniwersytetu Poznanskiego 2, 61-614 Poznan



A. Marlewski
Poznan University of Technology, Institute of Mathematics
Poland

ul. Piotrowo 3A, 60-965 Poznan



G. Kamieniarz
Adam Mickiewicz University, Faculty of Physics
Poland

ul. Uniwersytetu Poznanskiego 2, 61-614 Poznan



M. Antkowiak
Adam Mickiewicz University, Faculty of Physics
Poland

ul. Uniwersytetu Poznanskiego 2, 61-614 Poznan



References

1. Furrer A., Waldmann O. Magnetic cluster excitations. Rev. Mod. Phys., 2013, 85 (1), P. 367–420.

2. Timco G.A., McInnes E.J.L., Winpenny R.E.P. Physical studies of heterometallic rings: An ideal system for studying magnetically-coupled systems. Chem. Soc. Rev., 2013, 42 (4), P. 1796–1806.

3. McInnes E.J.L., Timco G.A., Whitehead G.F.S., Winpenny R.E.P. Heterometallic rings: Their physics and use as supramolecular building blocks. Angew. Chem. Int. Ed., 2015, 54 (48), 14244.

4. Ghirri A., Chiesa A., et al. Coherent spin dynamics in molecular Cr8Zn wheels. The J. Phys. Chem. Lett., 2015, 6 (24), 5062.

5. Baker M.L., Lancaster T., et al. Studies of a large odd-numbered odd-electron metal ring: Inelastic neutron scattering and muon spin relaxation spectroscopy of Cr8Mn. Chemistry – A European Journal, 2016, 22 (5), P. 1779–1788.

6. Woolfson R.J., Timco G.A., et al. [CrF(O2CtBu)2]9: Synthesis and characterization of a regular homometallic ring with an odd number of metal centers and electrons. Angew. Chem. Int. Ed., 2016, 55 (31), 8856.

7. Furukawa Y., Kiuchi K., et al. Evidence of spin singlet ground state in the frustrated antiferromagnetic ring Cr8Ni. Phys. Rev. B, 2009, 79 (13), 134416.

8. Baker M.L., Timco G.A., et al. A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings. Proc. Nat. Acad. Sci. USA, 2012, 109, P. 19113–19118.

9. Antkowiak M., Kozłowski P., et al. Detection of ground states in frustrated molecular rings by in-field local magnetization profiles. Phys. Rev. B, 2013, 87 (18), 184430.

10. Kozłowski P. Frustration and quantum entanglement in odd-membered ring-shaped chromium nanomagnets. Phys. Rev. B, 2015, 91 (17), 174432.

11. Owerre S.A., Nsofini J. Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins. Europhy. Lett. (EPL), 2015, 110 (4), 47002.

12. Garlatti E., Bordignon S., et al. Relaxation dynamics in the frustrated Cr9 antiferromagnetic ring probed by NMR. Phys. Rev. B, 2016, 93 (2), 024424.

13. Kamieniarz G., Florek W., Antkowiak M. Universal sequence of ground states validating the classification of frustration in antiferromagnetic rings with a single bond defect. Phys. Rev. B, 2015, 92 (14), 140411(R).

14. Florek W., Antkowiak M., Kamieniarz G. Sequences of ground states and classification of frustration in odd-numbered antiferromagnetic rings. Phys. Rev. B, 2016, 94 (22), 224421.

15. Ako A.M., Waldmann O., et al. Odd-numbered Fe(III) complexes: Synthesis, molecular structure, reactivity, and magnetic properties. Inorg. Chem., 2007, 46 (3), P. 756–766.

16. Garlatti E., Carretta S., et al. Theoretical design of molecular nanomagnets for magnetic refrigeration. Appl. Phys. Lett., 2013, 103, 202410.

17. Sharples J.W., Collison D., et al. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Commun., 2014, 5, 5321.

18. Kakaroni F.E., Collet A., et al. Constructing CrIII-centered heterometallic complexes: [NiII6CrIII] and [CoII6CrIII] wheels. Dalton Trans., 2018, 47 (1), P. 58–61.

19. Florek W., Kamieniarz G., Marlewski A. Universal lowest energy configurations in a classical Heisenberg model describing frustrated systems with wheel geometry. Phys. Rev. B, 2019, 100 (5), 054434.

20. Wilson R.J. Introduction to Graph Theory. Addison Wesley Longman Ltd., London, 1996.

21. Grajek M., Kopyciuk T., Florek W., Marlewski A. Collinear and non-collinear configurations in classical geometrically frustrated ring-shaped systems. Acta Phys. Pol. A, 2018, 133 (3), P. 417–419.

22. Popov A.P., Anisimov A.V., Eriksson O., Skorodumova N.V. Metastable noncollinear canted states from a phenomenological model of a symmetric ferromagnetic film. Phys. Rev. B, 2010, 81 (5), 054440.

23. Popov A.P., Rettori A., Pini M.G. Discovery of metastable states in a finite-size classical one-dimensional planar spin chain with competing nearest- and next-nearest-neighbor exchange couplings. Phys. Rev. B, 2014, 90 (13), 134418.

24. Popov A.P., Rettori A., Pini M.G. Spectrum of noncollinear metastable configurations of a finite-size discrete planar spin chain with a collinear ferromagnetic ground state. Phys. Rev. B, 2015, 92 (2), 024414.

25. Schmidt H.-J., Luban M. Classical ground states of symmetric Heisenberg spin systems. Journal of Physics A: Math. Gen., 2003, 36 (23), P. 6351–6378.

26. Schmidt H.-J. Theory of ground states for classical Heisenberg spin systems. Parts I–IV. 2017, arXiv: https://arxiv.org/abs/1701.02489,1707.02859,1707.06512,1710.00318.

27. Florek W., Marlewski A. Spectrum of some arrow-bordered circulant matrix. 2019, arXiv: https//arXiv.org/abs/1905.04807.

28. Toulouse G. Theory of the frustration effect in spin glasses: I. In Mezard M., Parisi G., Virasoro M.A.´ Spin Glass Theory and Beyond. World Scientific, Singapore: 1987, P. 99–103. Reprinted form: Toulouse G. Communcations de Physique. 1977, 2, P. 115–119.

29. Vannimenus J., Toulouse G. Theory of the frustration effect: II. Ising spins on a square lattice. J. Phys. C: Solid State Phys., 1977, 10 (18), P. L537–L542.

30. Pauling L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc., 1935, 57 (12), P. 2680–2684.

31. Wannier G.H. Antiferromagnetism. The triangular Ising net. Phys. Rev., 1950, 79 (2), P. 357–364.

32. Giampaolo S.M., Gualdi G., Monras A., Illuminati F. Characterizing and quantifying frustration in quantum many-body systems. Phys. Rev. Lett., 2011, 107 (26), 260602.

33. Binder K., Young A.P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys., 1986, 58, P. 801–967.

34. Lacorre P. The constraint functions: an attempt to evaluate the constraint rate inside structures that undergo ordered magnetic frustration. J. Phys. C: Solid State Phys., 1987, 20 (29), P. L775–L781.

35. Florek W., Antkowiak M., Kamieniarz G. The Kahn degenerate frustration points and the Lieb-Mattis level order in heterometallic wheel molecules with competing interactions. J. Mag. Mag. Mater., 2019, 487, 165326.


Review

For citations:


Florek W., Marlewski A., Kamieniarz G., Antkowiak M. The Lagrange variety approach applied to frustrated classical wheels. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):30–35. https://doi.org/10.17586/2220-8054-2020-11-1-30-35

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)