Geometrical analyses of nanostructures
https://doi.org/10.17586/2220-8054-2020-11-1-36-43
Abstract
In this paper, the statistical and dynamical equivalence between rectangular cell and lower symmetry cell is presented. The achievement of this equivalence will improve theoretical investigations of nanostructures as thin film or quantum rods.
About the Authors
V. SajfertSerbia
Djure Djakovica Street bb, 23000 Zrenjanin
N. Pop
Romania
V. Parvan. No.2, 300223, Timisoara
D. Popov
Romania
V. Parvan. No.2, 300223, Timisoara
References
1. Kittel Ch. Introduction to Soild State Physics, 7th ed., New York, Wiley, 1995.
2. Siegel R.W., Hu E., Roko M.C. (eds.) Nanostructure Science and Technology A Worldwide Study Prepared under the guidance of the IWGN, NSTC, WTEC, Loyola College in Maryland, 2004, URL: http://www.whitehouse.gov/WH/EOP/OSTP/NSTC.
3. Sajfert V.,¯Dajic R.,´ Cetkovi´ c M., To´ siˇ c B. Cylindrical quantum dots with hydrogen-boned materials.´ Nanotoechnology, 2003, 14, P. 358–365.
4. Sajfert V., ¯Dajic R., To´ siˇ c B.S., Hydrogen-Bonded Nanotubes as a Model for DNA Transcription.´ J. Nanosci. Nanotech., 2004, 4 (7), P. 886– 890 .
5. Sajfert V., Setrajˇ ciˇ c J., To´ siˇ c B.,´ ¯Dajic R. Excitonic Diffusion in Thin Molecular films.´ Czechoslovak Journal of Physics, 2004, 54 (9), P. 975– 988.
6. Sajfert V., Tosiˇ c B. Conductance Properties of Cylindrical Quantum Nano Dots.´ Journal of Computational and Theoretical Nanoscience, 2005, 2 (1) P. 148–153.
7. Sajfert V., Setrajˇ ciˇ c J.P., Ja´ cimovski S., To´ siˇ c B. Thermodynamic and Kinetic Properties of Cylindrical Quantum dots.´ Physica E: Lowdimensional Systems and Nanostructures, 2005, 25 (4), P. 479–491.
8. Backovic D., Sajfert V.,´ Setrajˇ ciˇ c J., To´ siˇ c B. Magnetic Nanorod in the Transition Temperature Vicinity.´ Journal of Computational and Theoretical Nanoscience, 2005, 2 (3), P. 448–455.
9. Popov D., Dong S.H., et al. Construction of the Barut-Girardello quasi coherent states for the Morse potential. Annals of Physics, 2013, 339, P. 122–134.
10. Smolkina M.O., Popov I.Y. , Blinova I.V., Milakis E. On the metric graph model for flows in tubular nanostructures. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (1), P. 6–11.
11. Ziman J.M. Principles of the Theory of Solids, Cambridge University Press, 1972.
12. Puta M., Iacob F. Geometric prequantization of the symmetric rigid body. Differential Geometry and Its Applications, 2001, 39, P. 385–390.
13. Ibach H., Luth H.¨ SolidState Physis, An Introduction to Principles of Material Science, 3rd edition, Springer-Verlag, Berlin, Heidelberg, New York, 2003.
14. Zubarev D. Statistical Mechanics of Nonequilibrium Processes, Basic Concepts, Kinetic Theory, Wiley, New York, 1997.
15. Chaikin P.B., Lubensky T.C. Principles of Condensed Matter Physics, Cambridge University Press, 1995.
16. yablikov S.V. Methods in the Quantum Theory in Magnetism, Plenum Press, New York, 1967.
17. Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products, Academic Press, New York, London, 1965.
18. Sajfert V., Bucalovic N., Ma´ skoviˇ c Lj., To´ siˇ c B. Electrons in thin films.´ Czechoslovak Journal of Physics, 2006, 56, P. 253–266.
Review
For citations:
Sajfert V., Pop N., Popov D. Geometrical analyses of nanostructures. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):36–43. https://doi.org/10.17586/2220-8054-2020-11-1-36-43