Fully self-consistent calculations of magnetic structure within non-collinear Alexander–Anderson model
https://doi.org/10.17586/2220-8054-2020-11-1-65-77
Abstract
An implementation of the non-collinear Alexander–Anderson model for itinerant electrons in magnetic systems is presented where self-consistency is reached for specified directions of the magnetic moments. This is achieved by means of Lagrange multipliers and a variational principle for determining the transverse and longitudinal components of the magnetic moments as well as the average number of d-electrons using direct optimisation. Various optimisation algorithms are compared and the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm is found to give the best performance. An application to antiferromagnetic Cr crystal is presented where spin-dynamics and curvature of the energy surface are calculated to compare results obtained with and without the constraints on the orientation of the magnetic moments.
About the Authors
A. V. IvanovRussian Federation
199034, Saint Petersburg
107 Reykjav´ık
P. F. Bessarab
Ireland
107 Reykjav´ık
197101 Saint Petersburg
H. Jonsson´
Ireland
107 Reykjav´ık
FI-00076 Espoo, Finland
V. M. Uzdin
Russian Federation
197101 Saint Petersburg
References
1. Anderson P.W. Localized Magnetic States in Metals. Phys. Rev., 1961, 124, P. 41.
2. Alexander S., Anderson P.W. Interaction Between Localized States in Metals. Phys. Rev., 1964, 133, P. A1594.
3. Uzdin V.M., Yartseva N.S. Periodic Anderson model for the description of noncollinear magnetic structure in low-dimensional 3d-systems. Comput. Mater. Sci., 1998, 10, P. 211.
4. Bessarab P.F., Uzdin V.M., Jonsson H. Calculations of magnetic states and minimum energy paths of transitions using a non-collinear extension´ of the Alexander-Anderson model and a magnetic force theorem. Phys. Rev. B , 2014, 89, P. 214424.
5. Bessarab P.F., Skorodumov A., Uzdin V.M., Jonsson H. Navigation on the Energy Surface of the Noncollinear Alexander-Anderson model.´ Nanosystems: physics, chemistry, mathematics, 2014, 6, P. 757.
6. Uzdin V.M., Demangeat C. Spin-density wave in Cr without the nesting property of the Fermi surface. J. Phys.: Condens. Matter, 2006, 18, P. 2717.
7. Uzdin V.M., Vega A. Magnetization reversal process at atomic scale in systems with itinerant electrons. J. Phys.: Condens. Matter, 2012, 24, P. 176002.
8. Bessarab P.F., Uzdin V.M., Jonsson H. Navigation on the energy surface of the non-collinear Alexander-Anderson model.´ Nanosystems: Physics, Chemistry, Mathematics, 2014, 5, P. 757.
9. Ivanov A., Bessarab P.F., Uzdin V.M., Jonsson H. Magnetic exchange force microscopy: Theoretical analysis of induced magnetization´ reversals. Nanoscale, 2017, 9, P. 13320.
10. You M.V., Heine V. Magnetism in transition metals at finite temperatures I. Computational model. J. Phys. F: Met. Phys., 1982, 12, P. 177–94.
11. Gyorffy B.L., Pindors A.J., Staunton J., Stocks G.M. and Winter H. A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys., 1985, 15, P. 1337–1386.
12. Antropov V.P., Katsnelson M.I., Harmon B.N., M. van Schilfgaarde, Kusnezov D. Spin dynamics in magnets: Equation of motion and finite temperature effects. Phys. Rev. B , 1996, 54, P. 1019.
13. Kohn W. Nobel Lecture: Electronic structure of matterwave functions and density functionals. Rev. Mod. Phys., 1999, 71, P. 1253.
14. Harrison W.A. Elementary Electronic Structure. Singapore, World Scientific, 2009.
15. Bruno P. Exchange Interaction Parameters and Adiabatic Spin-Wave Spectra of Ferromagnets: A Renormalized Magnetic Force Theorem. Phys. Rev. Lett., 2003, 90, P. 087205.
16. Dederichs P.H., Blugel S., Zeller R. and Akai H. Ground States of Constrained Systems: Application to Cerium Impurities.¨ Phys. Rev. Lett., 1984, 53, P. 2512.
17. Small L.M., Heine V. A couple method for calculating interatomic interactions in itinerant electron magnetic systems. J. Phys. F: Met. Phys., 1984, 14, P. 3041–3052.
18. Luchini M.U., Heine V., McMulla G.J. Calculation of longitudinal magnetic fluctuations in iron by a Landau energy and force method. J. Phys.: Condens. Matter, 1991, 3, P. 8647–8664.
19. Stocks G.M., Ujfalussy B., Xindong Wang, Nicholson D.M.C., Shelton W.A., Yang Wang, Canning A., Gyorffy B.L. Towards a constrained local moment model for first principles spin dynamics. Philos. Mag., 1998, 78, Nos. 5/6 665-673.
20. Kurz Ph., Foster F., Nordst¨ om L., Bihlmayer G., Bl¨ ugel S. Ab initio treatment of noncollinear magnets with the full-potential linearized¨ augmented plane wave method. Phys. Rev. B, 2004, 69, P. 024415.
21. Singer R., Fahnle M. and Bihlmayer G. Constrained spin-density functional theory for excited magnetic configurations in an adiabatic approx-¨ imation. Phys. Rev. B, 2005, 71, P. 214435.
22. Stocks G.M., Eisenbach M., Ujfalussy B., Lazarovits B., Szunyogh L., Weinberger P. On calculating the magnetic state of nanostructures.´ Prog. Mater. Sci, 2007, 52, P. 371–387.
23. Ma P.W., Dudarev S.L. Constrained density functional for noncollinear magnetism. Phys. Rev. B, 2015, 91, P. 054420.
24. Wu Q., and T. Van Voorhis. Direct optimization method to study constrained systems within density-functional theory. Phys. Rev. A , 2005, 72, P. 024502.
25. Wu Q., and T. Van Voorhis. Constrained Density Functional Theory and Its Application in Long-Range Electron Transfer. J. Chem. Theory Comput., 2006, 2, P. 765.
26. ORegan D.D., Teobaldi G. Optimization of constrained density functional theory. Phys. Rev. B, 2016, 94, P. 035159.
27. Nocedal J., Wright S.J. Numerical Optimization, 2nd ed. Springer, New York, NY, USA, 2006.
28. Hubbard J. Electron correlations in narrow energy bands. Proc. Roy. Soc. A, 1963, 276, P. 238.
29. Ivanov A.V., Uzdin V.M., Jonsson H. Fast and Robust Algorithm for the Energy Minimization of Spin Systems Applied in an Analysis of´ High Temperature Spin Configurations in Terms of Skyrmion Density. arXiv:1904.02669v2 [physics.comp-ph] 2019.
30. Bessarab P.F., Uzdin V.M., Jonsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and´ antivortex annihilation. Computer Physics Communications, 2015, 196, P. 335–347.
31. Mentink J.H., Tretyakov M.V., Fasolino A., Katsnelson M.I. and Rasing Th. Stable and fast semi-implicit integration of the stochastic LandauLifshitz equation. J. Phys.: Condens. Matter, 2010, 22, P. 176001.
32. Liechtenstein A.I., Katsnelson M.I., Antropov V.P., Gubanov V.A. J. Magn. Magn. Mater., 1987, 67, P. 65–74.
33. Katsnelson M.I., Lichtenstein A.I. Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation. J. Phys.: Condens. Matter, 2004, 16, P. 7439–7446.
34. Bessarab P.F., Uzdin V.M., Jonsson H. Harmonic transition-state theory of thermal spin transitions.´ Phys. Rev. B., 2012, 85, P. 184409.
35. Bessarab P.F., Uzdin V.M., Jonsson H. Size and shape dependence of thermal spin transitions in nanoislands.´ Phys. Rev. Lett., 2013, 110, P. 020604.
36. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng., 2010, 18, P. 015012.
Review
For citations:
Ivanov A.V., Bessarab P.F., Jonsson´ H., Uzdin V.M. Fully self-consistent calculations of magnetic structure within non-collinear Alexander–Anderson model. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):65–77. https://doi.org/10.17586/2220-8054-2020-11-1-65-77