Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: A concentration dependant study

https://doi.org/10.17586/2220-8054-2020-11-1-78-85

Abstract

Synthesis of compounds that can prevent bacterial resistance is of huge interest and gaining immense popularity. Cobalt (Co) is one of the cheaper transition metals and its nano form has not been studied in details for antibacterial actions. Comparative analysis of Co nanoparticles with bulk Co and standard antibacterials are also lacking. In our study, concentration dependent action of Co nanoparticles was observed from 0.125 to 128.0 µg/ml against S. aureus and E. coli. Zone of inhibition of Co nanoparticles was better against E. coli than S. aureus. Co nanoparticles were markedly betterthan bulk Co, oxytetracycline and gentamicin. Activity index and fold increase of Co nanoparticles were higher at most of the concentrations. In conclusion, Co nanoparticles showed better antibacterial action than other tested compounds against S. aureus and E. coli particularly at lower concentrations, and their use may be extended in different biomedical fields in future.

About the Authors

V. Gupta
Department of Chemistry, University of Jammu
India

J&K



V. Kant
Department of Veterinary Pharmacology & Toxicology
India

LUVAS, Hisar



A. K. Sharma
Department of Chemistry, University of Jammu
India

J&K



M. Sharma
Department of Chemistry, University of Jammu
India

J&K



References

1. Henderson D.K. Managing methicillin-resistant staphylococci: a paradigm for preventing nosocomial transmission of resistant organisms. Am. J. Infect. Control, 2006, 34, P. S46–S54, S64–S73.

2. Faundez G., Troncoso M., Navarrete P., Figueroa G. Antimicrobial activity of copper surfaces against suspensions of´ Salmonella enterica and Campylobacter jejuni. BMC Microbiol., 2004, 4, P. 19–26.

3. Siddiqi K.S., Rahman A., Tajuddin, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity against Microbes. Nanoscale Res. Lett., 2018, 13, P. 2–13.

4. Peterson E., Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol., 2018, 9, P. 2–21.

5. Ghosh A.K., Mitra M., et al. Antibacterial and catecholase activities of Co (III) and Ni (II) Schiff base complexes. Polyhedron, 2016, 107, P. 1.

6. Mjos K.D., Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114 (8), P. 4540–4563.

7. Zhang L., Lan T., et al. Template-free Synthesis of One-dimensional Cobalt Nanostructures by Hydrazine Reduction Route. Nanoscale Res. Lett., 2011, 6, P. 58.

8. Zhu Y., Zheng H., et al. Growth of Dendritic Cobalt Nanocrystals at Room Temperature. J. Cryst. Growth, 2004, 260, P. 427–434.

9. Yang Q., Tang K., et al. PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires. J. Phys. Chem. B, 2002, 106, P. 9227– 9230.

10. Yang Q., Tang K., et al. Wet Synthesis and Characterization of MSe (M = Cd, Hg) Nanocrystallites at Room Temperature. J. Mater. Res., 2002, 17 (5), P. 1147–1152.

11. Yang Q., Wang F., et al. The formation of fractal Ag nanocrystallites via γ-irradiation route in isopropyl alcohol. J. Mater. Chem. Phys., 2002, 78, P. 495–500.

12. Lee S.M., Cho S.N., Cheon J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals. Adv. Mater., 2003, 15 (5), P. 441–444.

13. Puntes V.F., Kishnan K.M., Alivisatos A.P. Colloidal nanocrystal shape and size control: the case of cobalt. Science, 2001, 291 (5511) P. 2115–2117.

14. Yoon K.Y., Byeon J.H., Park J.H., Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ., 2007, 373, P. 572–575.

15. Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. ActaBiomater., 2008, 4, P. 707–716.

16. Hoseinzadeh E., Makhdoumi P., et al. A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Curr. Drug Metab., 2017, 18 (2), P. 120–128.

17. Azam A, Ahmed A.S., et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed., 2012, 7, P. 6003–6009.

18. Morones J.R., Elechiguerra J.L., et al. The bactericidal effect of silver nanoparticles. Nanotech., 2005, 16 (10), P. 2346–2353.

19. Wahab R., Kim Y-S., et al. Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity. Nanoscale Res. Lett., 2010, 5, P. 1675–1681.

20. Ahamed M., AlhadlaqHisham A., et al. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater., 2014, 637858.

21. Shahzadi T., Zaib M., et al. Synthesis of Eco-friendly Cobalt Nanoparticles Using Celosia argentea Plant Extract and Their Efficacy Studies as Antioxidant, Antibacterial, Hemolytic and Catalytical Agent. Arab. J. Sci. Eng., 2019, 44, P. 6435–6444.

22. Anwar A., Numan A., et al. Cobalt nanoparticles as novel nanotherapeutics against Acanthamoebacastellanii. Parasite. Vector, 2019, 12 (1), P. 280.

23. Raza M.A., Kanwal Z., Riaz S., Naseem S. Synthesis, characterization and antibacterial properties of nano-sized cobalt particles. The 2016 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’16), Jeju Island, Korea, 2016.

24. Venkatesan K., Supriya R., et al. Cobalt ferrite (CoFe2O4) nanoparticles for evaluation of antibacterial activity. J. Ind. Chem. Soc., 2015, 92, P. 637–639.

25. Gingasu D., Mindru I., et al. Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J. Nanomater., 2016, 2106756.

26. Jung W.K., Koo H.C., et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74 (7), P. 2171–2178.

27. Li H., Chen Q., Zhao J., Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep., 2015, 5, P. 11033.

28. Armentano I., Arciola C.R., et al. The interaction of bacteria with engineered nanostructured polymeric materials: A review. Sci. World J., 2014, 2014, 410423.

29. Gao W., Thamphiwatana S., Angsantikul P., Zhang L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6, P. 532–547.

30. Luan B., Huynh T., Zhou R. Complete wetting of graphene by biological lipids. Nanoscale, 2016, 8, P. 5750–5754.

31. Xu Y., Wei M.T., et al. Exposure to TiO2 nanoparticles increases staphylococcus aureus infection of HeLa cells. J. Nanobiotechnol., 2016, 14, P. 34.

32. Zhang W., Li Y., Niu J.F., Chen Y.S. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 2013, 29 (15), P. 4647–4651.

33. Pelgrift R.Y., Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv., 2013, 65, P. 1803–1815.

34. Raffi M., Hussain F., et al. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol., 2008, 24, P. 192–196.

35. Dizaj S.M., Lotfipour F., et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C, 2014, 44, P. 278–284.

36. Ivask A., Kurvet I., et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLOS One, 2014, 9 (7), e102108.

37. You C., Han C., et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep., 2012, 39, P. 9193–9201.

38. Mukha I.P., Eremenko A.M., et al. Antimicrobial activity of stable silver nanoparticles of a certain size. Appl. Biochem. Micro., 2013, 49 (2), P. 199–206.

39. Selvarani M., Prema P. Evaluation of antibacterial efficacy of chemically synthesized copper and zerovalent iron nanoparticles. Asian J. Pharm. Clin. Res., 2013, 6, P. 223–227.

40. Kim J.S., Kuk E., et al. Antimicrobial effects of silver nanoparticles. Nanomed., 2007, 3, P. 95–101.

41. Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interf. Sci., 2004, 275, P. 177–182.

42. Deravi L.F., Swartz J.D., Wright D.W. The biomimetic synthesis of metal oxide nanomaterials, Wiley, 2010.

43. Mu H., Tang J., et al. Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci. Rep., 2016, 6, P. 18877.

44. Lai H-Z., Chen W-Y., Wu C-Y., Chen Y-C. Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl. Mater. Interfaces, 2015, 7, P. 2046–2054.


Review

For citations:


Gupta V., Kant V., Sharma A.K., Sharma M. Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: A concentration dependant study. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):78–85. https://doi.org/10.17586/2220-8054-2020-11-1-78-85

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)