Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Microwave synthesis and studies room temperature optical properties of LaF3: Ce3+, Pr3+, Nd3+ nanocrystals

https://doi.org/10.17586/2220-8054-2020-11-1-117-122

Abstract

Lanthanum fluoride (LaF3:Ce3+, Pr3+, Nd3+) was synthesized by water soluble LaCl3 + CeCl3+ PrCl3 + NdCl3 and NH4F as starting materials in de-ionized water as solvent using microwave assisted technique. The structure of LaF3:Ce3+, Pr3+, Nd3+ nanocrystals analyzed by XRD and TEM analysis is found to be in hexagonal structure and average crystalline particle size is 20 nm (JCPDS standard card (32-0483) of pure hexagonal LaF3 crystals). The absorption edge in UV spectra is found at 250 nm corresponding to energy of 4.9 eV. It further shows a wide transparent window lying between 200 nm–800 nm. For LaF3; Ce3+, Pr3+, Nd3+ nanocrystals emission of blue color (458 nm) has been observed with at an excitation wavelength of 254 nm. The measured relative second harmonic generation (SHG) efficiency of LaF3: Ce3+, Pr3+, Nd3+ in de-ionized water with respect to KDP crystal is 0.186.

About the Author

Sidheshwar G. Gaurkhede
Department of Physics, Bhavan’s College of Science
India

Andheri (W) Mumbai – 400058



References

1. Zheng H.R. Up-converted emission in Pr3+ doped fluoride nanocrystals-based oxyfluoride glass ceramics. Journal of Luminescence, 2004, 108(1), P. 395–399.

2. Nogami M. Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass. Journal of Luminescence, 2002, 97(3), P. 147–152.

3. Schoonman J., Oversluizen G., Wapennar K.E.D. Solid electrolyte properties of LaF3. Solid State Ionics, 1980, 1(3), P. 211–221.

4. Yamazoe N., Miura N. Environmental gas sensing. Sensors Actuators, 1994, B20(2), P. 95–102.

5. Fergus J.W. The Application of Solid Fluoride Electrolytes in Chemical Sensors. Sensors Actuators, 1997, B42(2), P. 119–130.

6. Miura N., Hisamoto J., Yamazoe N., Kuwata S. LaF3 sputtered film sensor for detecting oxygen at room temperature. Applied Surface Science, 1988, 33/34, P. 1253–1259.

7. Miura N., Hisamoto J., Yamazoe N., Kuwata S., Salardenne J., Solid-state oxygen sensor using sputtered LaF3 film. Sensors Actuators, 1989, B16(4), P. 301–310.

8. Fedorov P.P., Luginina A.A., Kuznetsov S.V., Osiko V.V. Nanofluorides. Journal of Fluorine Chemistry, 2011, 132(12), P. 1012–1039.

9. Trnovcova V., Garashina L.S., Skubla A., Fedorov P.P., Cicka R,, Krivandina E.A,, Sobolev B.P. Structural aspects of fast ionic conductivity of rare earth fluorides. Solid State Ionics, 2003, 157(1-4), P. 195–201.

10. Trnovcovaa V., Fedorovb P.P., Furara I. Fluoride Solid Electrolytes. Russian Journal of Electrochemistry, 2009, 45(6), P. 630–639.

11. Guo H., Zhang T., Qiao Y.M., Zhao L.H., Z. Quan Li. Ionic Liquid-Based Approach to Monodisperse Luminescent LaF3: Ce, Tb Nanodiskettes: Synthesis, Structural and Photoluminescent Properties. Journal Nanoscience and Nanotech, 2010, 10(3), P. 1913–1919.

12. Zhang Y., Lu M. Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals. Nanotechnology, 2007, 18(27), P. 275603.

13. Zhu X., Zhang Q., Li Y., Wang H. Redispersible and water-soluble LaF3: Ce, Tb nanocrystals via a microfluidic reactor with temperature steps. Journal Material Chemistry, 2008, 18(42), P. 5060–5062.

14. Mi C.C., Tian Z.H., Han B.F., Mao C.., Xu S.K. Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors. Journal Alloys Compound, 2012, 525, P. 154–158.

15. Pieterson L.V., Wegh R.T., Meijerink A. Emission spectra and trends for 4fn−15d↔4fn transitions of lanthanide ions: Experiment and theory. The Journal of Chemical Physics, 2001, 115(20), P. 9382.

16. Meng J., Zhang M., Liu Y. Hydrothermal preparation and luminescence of LaF3:Eu3+ nanoparticles. Spectroscopic Acta part A, 2007, 66(1), P. 81–85.

17. Daihua T., Liu X., Zhen Z. Oleic acid (OA)-modified LaF3: Er, Yb nanocrystals and their polymer hybrid materials for potential opticalamplification applications. Journal of Material Chemistry, 2007, 17(1), P. 1597–1601.

18. Daqin C., Yuansheng W., En Ma, Yunlong Y. Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals. Material Chemistry Physics, 2007, 101(9), P. 464–469.

19. Pi D., Wang F., Fan X., Wang M., Zhang Y. Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals. Materials Letters, 2007, 61(6), P. 1337–1340.

20. Yuanfang L., Wei C. Shaopeng W. Alan G.J. Sarah W. Boon K.W. X-ray Luminescence of LaF3: Tb and LaF3: Ce, Tb Water Soluble Nanoparticles. Journal of Applied Physics, 2008, 103(6), P. 1–7.

21. Wang Z.L., Quan Z.W., Jia P.Y., Lin C.K., Luo Y., Chen Y., Fang J., Zhou W., Connor C.J.O., Lin. A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+ / LaF3 (Core / Shell) Nanoparticles. Chemistry of Materials, 2006, 18(8), P. 2030–2037.

22. Li C., Liu X., Yang P., Zhang C., Lian H., and Lin . LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 (Core/Shell) Nanoplates: Hydrothermal Synthesis and Luminescence Properties. The Journal of Physical Chemistry C, 2008, 112(8), P. 2904–2910.

23. Guo H. Photoluminescent properties of CeF3:Tb3+ nanodiskettes prepared by hydrothermal microemulsion. Applied Physics B-Lasers Optics, 2006, 84(1-2), P. 365–369.

24. Kurtz S.K., Perry T.T. A powder technique for the evaluation of nonlinear optical materials. Journal of Applied Physics, 1968, 39(8), P. 3798– 3813.


Review

For citations:


Gaurkhede S.G. Microwave synthesis and studies room temperature optical properties of LaF3: Ce3+, Pr3+, Nd3+ nanocrystals. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(1):117–122. https://doi.org/10.17586/2220-8054-2020-11-1-117-122

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)