Formation of cobalt ferrite nanopowders in an impinging-jets microreactor
https://doi.org/10.17586/2220-8054-2021-12-3-303-310
Abstract
The dependence of cobalt ferrite nanosized powder production process on the synthesis method and conditions was studied. The paper shows the possibility for producing nanocrystalline CoFe2O4 with an average particle size of 12 nm under conditions of an impinging-jets microreactor at room temperature. The influence exerted by the parameters of process implementation in the microreactor on phase formation in the CoO–Fe2O3–H2O system was analyzed.
About the Authors
K. I. BarashokRussian Federation
K. I. Barashok
Professora Popova St., 5, Saint Petersburg, 197376
V. V. Panchuk
Russian Federation
V.V. Panchuk
Universitetskaya emb., 7-9, Saint Petersburg, 199034
V. G. Semenov
Russian Federation
V. G. Semenov
Universitetskaya emb., 7-9, Saint Petersburg, 199034
O. V. Almjasheva
Russian Federation
O.V. Almjasheva
Professora Popova St., 5, Saint Petersburg, 197376
Politekhnicheskaya St. 26, Saint Petersburg, 194021
R. Sh. Abiev
Russian Federation
R. Sh. Abiev
Moskovsky Pr., 26, Saint Petersburg, 190013
Makarova emb., 2 Saint Petersburg, 199034
References
1. Sharifi I., Shokrollahi H., Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2012, 324(6), P. 903–915.
2. Amiri M., Akbari A., Ahmadi M., Pardakhti A., Salavati-Niasari M. Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures. Journal of Molecular Liquids, 2018, 249, P. 1151–1160.
3. Amiri S., Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Materials Science and Engineering: C, 2012, 33(1), P. 1–8.
4. Oh Y., Moorthy M.S., Manivasagan P., Bharathiraja S., Oh J. Magnetic hyperthermia and pH-responsive effective drug delivery to the subcellular level of human breast cancer cells by modified CoFe2O4 nanoparticles. Biochimie, 2017, 133, P. 7–19.
5. Draˇsler B., Drobne D., Novak S., et al. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes. International Journal of Nanomedicine, 2014, 9(1), P. 1559–1581.
6. Guglielmo C.D., L´opez D. R., Lapuente J. De., Llobet Mallafre J. M., Su`arez M. B. Embryotoxicity of cobalt ferrite and gold nanoparticles: A first in vitro approach. Reproductive Toxicology, 2010, 30(2), P. 271–276.
7. Sanpo N., Berndt C. C., Wen C., Wang J. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia, 2013, 9(3), P. 5830–5837.
8. Sincai, M., Ganga, D., Bica, D., Vekas, L. The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma. Journal of Magnetism and Magnetic Materials, 2001, 225(1–2), P. 235–240.
9. Amiri M., Salavati-Niasari M., Akbari A. A magnetic CoFe2O4/SiO2 nanocomposite fabricated by the sol-gel method for electrocatalytic oxidation and determination of L-cysteine. Microchimica Acta, 2017, 184(3), P. 825–833.
10. Chen Y., Sun J., Zhang Y., Zheng S.,Wang B., Chen Z., Xue Y., Chen M., Abbas M., Chen J. CoFe2O4 nanoarray catalysts for Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology, 2017, 45(9), P. 1082–1087.
11. Chen H.D., Xu J.K., Wei J.Q., Wang P.F., Han Y.B., Xu J.C., Hong B., Jin H.X., Jina D.F., Peng X.L., Li J., Yang Y.T., Ge H.L., Wang X.Q. Mesoporous CoFe2O4 nanowires: Nanocasting synthesis, magnetic separation and enhanced catalytic degradation for ciprofloxacin. Journal of Physics and Chemistry of Solids, 2019, 132, P. 138–144.
12. Tan X., Wang X., Liu Q., Zhou J., Zhang P., Zheng S., Miao S. Bio-gel template synthesis of CoFe2O4 nano-catalysts and application in aerobic oxidation of cyclohexane. International Journal of Hydrogen Energy, 2107, 42(30), P. 19001–19009.
13. Huang Y., YangW., Yu Y., Haov S. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 840, P. 409–414.
14. Xavier S., Thankachan S., Jacob B.P., Mohammed E.M. Effect of sintering temperature on the structural and magnetic properties of cobalt ferrite nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(3), P. 430–437.
15. Song N., Gu S., Wu Q., Li C., Jhou J. Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. Journal of Magnetism and Magnetic Materials, 2018, 451, P. 793–798.
16. Song N., Gu S., Zhou J., Xia W., Zhang P. Achieving a high cutting-off frequency in the oriented CoFe2O4 nanocubes. Journal of Applied Physics Letter, 2017, 111, P. 133108.
17. Karthick R., Ramachandran K., Srinivasan R. Study of faraday effect on Co1-xZnxFe2O4 nanoferrofluids. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 624–628.
18. Ojha Vibha H., Kant K. Mohan. Temperature dependent magnetic properties of superparamagnetic CoFe2O4 nanoparticles. Physica B: Condensed Matter., 2019, 567, P. 87–94.
19. Lavela P., Tirado J.L. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources., 2007, 172(1), P. 379–387.
20. Chauhan C.C., Jotania R.B. Structural and magnetic properties of BaCo2-xNixFe16O27 hexagonal ferrite prepared by a simple heat treatment method. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 595–598.
21. Vasylenko I.V., Kazakevych M.L., Pavlishchuk, V.V. Design of ferrofluids and luminescent ferrofluids derived from CoFe2O4 nanoparticles for nondestructive defect monitoring. Theoretical and Experimental Chemistry, 2019, 54(6), P. 365–368.
22. Murugesan C., Perumal M., Chandrasekaran G. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route. J. Physica B: Condensed Matter., 2014, 448, P. 53–56.
23. Gofman I.V., Nikolaeva A.L., Khripunov A.K., Yakimansky A.V., Ivan’kova E.M., D.P. Romanov, Ivanova O.S., Teplonogova M.A., Ivanov V.K. Impact of nano-sized cerium oxide on physico-mechanical characteristics and thermal properties of the bacterial cellulose films. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(6), P. 754–762.
24. Gingasu D., Mindru I., Mocioiua O.C., Preda S., Stanica N., Patron L., Ianculescu A., Oprea O., Nita S., Paraschiv I., Popa M., Saviuc K., Bleotu C., Chifiriuc M.C. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract. Materials Chemistry and Physics, 2016, 182, P. 219–230.
25. Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO3 nanoparticles under the hydrothermal condition. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 703–708.
26. Nguen Anh Tien, Mittova I.Ya., Al’myasheva O.V. Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions. Russian Journal of Applied Chemistry, 2009, 82(11), P. 1915–1918.
27. Kim Y.I., Kim D., Lee C.S. Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B Condens. Matter., 2003, 337, P. 42–51.
28. Manova E., Kunev B., Paneva D., Mitov I., Petrov L., Estourns C., D’Orlans C., Rehspringer J.L., Kurmoo M. Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite CoFe2O4. Chem. Mater., 2004, 16(26), P. 5689–5692.
29. Nguyen Anh Tien, Chau Hong Diem, Nguyen Thi Truc Linh, Mittova V.O., Do Tra Huong, Mittova I.Ya. Structural and magnetic properties of YFe1-xCoxO3 (0.1 ≤ x ≤ 0.5) perovskite nanomaterials synthesized by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics., 2018, 9(3), P. 424–429.
30. Saffari J., Ghanbari D., Mir N., Khandan-Barani K. Sonochemical synthesis of CoFe2O4 nanoparticles and their application in magnetic polystyrene nanocomposites. J. Ind. Eng. Chem., 2014, 20, P. 4119–4123.
31. Kalpanadevi K., Sinduja C.R., Manimekalai R. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures. Mater Sci-Pol., 2014, 32(1), P. 34–38.
32. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.P. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russian Journal of Inorganic Chemistry, 2007, 52(11), P. 1648–1656.
33. Meng L.-Y., Wang B., Ma M.-G., Lin K.-L. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Materials Today Chemistry, 2016, 1-2, P. 63–83.
34. Ivanov V.K., Polezhaeva O.S., Gil’ D.O., Kopitsa G.P., Tret’yakov Yu.D. Hydrothermal microwave synthesis of nanocrystalline cerium dioxide. Doklady Chemistry, 2009, 426(2), P. 131–133.
35. Kuznetsova V.A., Almjasheva O.V., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Physics and Chemistry, 2009, 35(2), P. 205–209.
36. Almjasheva O.V., Gusarov, V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89(6), P. 851–856.
37. Gusarov V.V. Fast solid-phase chemical reactions. Russ. J. Gen. Chem., 1997, 67(12), P. 1846–1851.
38. Gusarov V.V., Ishutina Zh.N., Malkov A.A., Malygin A.A. Solid-phase reaction of mullite formation in nanosized composite films. Dokl. Phys. Chem., 1997, 357(1–3), P. 360–363.
39. Gusarov V.V., Malkov A.A., Ishutina Zh.N., Malygin A.A. Phase formation in a nanosize silicon oxide film on the surface of aluminum oxide. Tech. Phys. Lett., 1998, 24(1), P. 1–3.
40. Komlev A.A., Panchuk V. V., Semenov V.G., Almjasheva O.V., Gusarov V.V. Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O system. Russ. J Appl. Chem., 2016, 89(12), P. 1930–1936.
41. Krasilin A.A., Almjasheva O.V., Gusarov V.V. Effect of the structure of precursors on the formation of nanotubular magnesium hydrosilicate. Inorganic Materials, 2011, 47(10), P. 1111–1115.
42. Proskurina O.V., Nogovitsin I.V., Il’ina T.S., Danilovich D.P., Abiev R.Sh., Gusarov V.V. Formation of BiFeO3 nanoparticles using impinging jets microreactor. Russian Journal of General Chemistry, 2018, 88(10), P. 2139–2143.
43. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. J. Chem. Tech. App., 2017, 1(1), P. 7–13.
44. Abiev R.Sh., Al’myasheva O.V., Gusarov V.V., Izotova S.G. Method of producing nanopowder of cobalt ferrite and microreactor to this end. RF Patent 2625981, Bull. 20, 20.07.2017. https://patents.google.com/patent/RU2625981C1/en.
45. Ashgriz N., Brocklehurst W., Talley D. Mixing mechanisms in a pair of impinging jets. J. Propul. Power., 2001, 17(3), P. 736.
46. Handbook of Atomization and Sprays. Ed. N. Ashgriz, Toronto, Springer Science Business Media, LLC, 2011. Ch. 30, P. 685.
47. Erkoc E., Fonte C.P., Dias M.M., Lopes J.C.B., Santos R.J. Numerical study of active mixing over a dynamic flow field in a T-jets mixer – Induction of resonance. Chem. Eng. Res. Design., 2016, 106, P. 74.
48. Ravi Kumar D.V., Prasad B.L.V., Kulkarni A.A. Impinging jet micromixer for flow synthesis of nanocrystalline MgO: role of mixing/ impingement Zone. Ind. Eng. Chem. Res., 2013, 52, P. 17376.
49. Kolodziej P., Yang W.P., Macosko C.W., Wellinghoff S.T. Impingement mixing and its effect on the microstructure of RIM polyurethanes. J. Polymer Sci. B, 1986, 24(10), P. 2359.
50. Semenov V.G., Moskvin L.N., Efimov A.A. Analytical potential of M¨ossbauer spectroscopy. Russian Chemical Reviews, 2006, 75(4), P. 317–327.
51. Gong C., Chen F., Yang Q., Luo K., Yao F.,Wang S.,Wang X.,Wu J., Li X.,Wang D., Zeng G. Heterogeneous activation of peroxymonosulfate by Fe–Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chemical Engineering Journal, 2017, 321, P. 222– 232.
52. Carvalho D.C., Ferreira N.A., Filho J.M., Ferreira O.P., Soares J.M., Oliveira A.C. Ni–Fe and Co–Fe binary oxides derived from layered doublehydroxides and their catalytic evaluation for hydrogen production. Catalysis Today, 2015, 250, P. 155–165.
53. Lyubutin I.S., Starchikov S.S., Lin C.-R., Gervits N.E., Korotkov N.Yu., Bukreeva T.V. Structural and magnetic properties of iron oxide nanoparticles in shells of hollow microcapsules designed for biomedical applications. Croat. Chem. Acta., 2015, 88(4), P. 397–403.
54. Koch C.D. Structures and properties of anionic clay minerals. Hyperfine Interactions, 1998, 117, P. 131–157.
55. Vasundhara K., Achary S.N., Deshpande S.K, Babu P.D., Meena S.S., Tyagi A.K. Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys., 2013, 113, P. 194101.
Review
For citations:
Barashok K.I., Panchuk V.V., Semenov V.G., Almjasheva O.V., Abiev R.Sh. Formation of cobalt ferrite nanopowders in an impinging-jets microreactor. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):303-310. https://doi.org/10.17586/2220-8054-2021-12-3-303-310