Preview

Наносистемы: физика, химия, математика

Расширенный поиск

The effect of hydrolysis duration on the phase composition, texture, aggregation and agglomeration of ZrO2 nanoparticles

https://doi.org/10.17586/2220-8054-2021-12-4-472-480

Аннотация

In this work, a number of ZrO2 · nH2O and ZrO2 samples were synthesized by direct precipitation and hydrolysis with different duration (36 and 61 h) followed by neutralization and thermal treatment. The prepared samples were analyzed using DT-TGA, PXRD, N2 physisorption and LD methods. The dependence of the size of crystallites and secondary particles, phase composition, texture, and particle morphology on the amount of zirconium hydrolyzed to form m-ZrO2 is shown. The possibility of regulating the phase composition of ZrO2 has been established while maintaining the specific surface area (110 – 120 m2/g), as well as creating a hierarchical system of micro-mesopores. The mechanism of the ZrO2 · nH2O formation during hydrolysis and precipitation is considered. The size of the critical nucleus is estimated (1.5 – 2 nm).

Об авторе

Sh. Omarov
Ioffe Institute
Россия


Список литературы

1. Omarov Sh.O., Pakhomov N.A. Varying the conditions of ZrO2 ·nH2O precipitation and aging as a way of controlling the phase composition and texture of ZrO2. Catal. Ind., 2021, 13(1), P. 12–20.

2. Otroshchenko T., Radnik J., Schneider M., Rodemerck U., Linke D., Kondratenko E.V. Bulk binary ZrO2-based oxides as highly active alternative-type catalysts for non-oxidative isobutane dehydrogenation. Chem. Commun., 2016, 52, P. 8164—8167.

3. Omarov Sh.O., Vlasov E.A., et al. Physico-chemical properties of MoO3/ZrO2 catalysts prepared by dry mixing for isobutane alkylation and butene transformations. Appl. Catal. B., 2018, 230, P. 246–259.

4. Omarov Sh.O., Sladkovskiy D.A., Martinson K.D., Peurla M., Aho A., Murzin D.Yu., Popkov V.I. Influence of the initial state of ZrO2 on genesis, activity and stability of Ni/ZrO2 catalysts for steam reforming of glycerol. Appl. Catal. A, 2021, 616, P. 118098.

5. Li J., Chen J., Song W., Liu J., Shen W. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for lowtemperature water-gas shift reaction. Appl. Catal. A, 2008, 334, P. 321–329.

6. Matsui K., Ohga M. Formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions. J. Am. Ceram. Soc., 1997, 80(8), P. 1949–1956.

7. Matsui K., Ohga M. formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions: II. J. Am. Ceram. Soc., 2000, 83(6), P. 1389–1392.

8. Matsui K., Ohga M. Formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions: III, kinetics study for the nucleation and crystal-growth processes of primary particles. J. Am. Ceram. Soc., 2001, 84(10), P. 2302–2012.

9. Matsui K., Ohga M. Formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions: IV, effect of ZrOCl2 concentration and reaction temperature. J. Am. Ceram. Soc., 2002, 85(3), P. 545–553.

10. Sharikov F.Yu., Almjasheva O.V., Gusarov V.V. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Russ. J. Inorg. Chem., 2006, 51(10), P. 1538–1542.

11. Raghavendra V.B., Naik S., Antony M., Ramalingam G., Rajamathi M., Raghavan S. Amorphous, monoclinic, and tetragonal porous zirconia through a controlled self-sustained combustion route. J. Am. Ceram. Soc., 2011, 94(6), P. 1747–1755.

12. Stefaniˇ c G., Musi´ c S., Popovi´ c S., Furi´ c K. Formation of ZrO´ 2 by the thermal decomposition of zirconium salts. Croat. Chem. Acta., 1996, 69, P. 223–239.

13. Zhukov A.V., Chizhevskaya S.V., Phyo P., Panov V.A. Heterophase synthesis of zirconium hydroxide from zirconium oxychloride. Inorg. Mater., 2019, 55(10), P. 994–1000.

14. Thommes M., Kaneko K., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87(9-10), P. 1051–1069.

15. Toraya H., Yoshimura M., Somiya S. Calibration curve for quantitative analysis of the monoclinic tetragonal ZrO2 system by X-ray diffraction. J. Am. Chem. Soc., 1984, 67(6), P. C119–C121.

16. Sato T. The thermal decomposition of zirconium oxyhydroxide. J. Therm. Anal. Calorim., 2002, 69, P. 255—265.

17. Livage J., Doi K., Mazires C. Nature and thermal evolution of amorphous hydrated zirconium oxide. J. Am. Ceram. Soc., 1968, 51(6), P. 349– 353.

18. Garvie R.C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem., 1965, 69(4), P. 1238–1243.

19. Almjasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(4), P. 428–437.

20. Mercera P.D.L., Van Ommen J.G., Doesburg E.B.M., Burggraaf A.J., Ross J.R.H. Zirconia as a support for catalysts. Evolution of the texture and structure on calcination in air. Appl. Catal., 1990, 57, P. 127–148.

21. Srinivasan R., Rice L., Davis B.H. Critical particle size and phase transformation in zirconia: transmission electron microscopy and X-ray diffraction studies. J. Am. Ceram. Soc., 1990, 73(11), P. 3528–3530.

22. Ceresoli D., Vanderbilt D. Structural and dielectric properties of amorphous ZrO2 and HfO2. Phys. Rev. B., 2006, 74(12), P. 125108.

23. Hu M. Z.-C., Harris M.T., Byers C.H. Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis. J. Coll. Int. Sci., 1998, 198, P. 87–99.

24. Hu M. Z.-C., Zielke J.T., Byers C.H. Small-angle x-ray scattering studies of early-stage colloid formation by thermohydrolytic polymerization of aqueous zirconyl salt solutions. J. Mater. Res., 1999, 14(1), P. 103–113.

25. Zhao Y., Li W., Zhang M., Tao K. A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia. Catal. Comm., 2002, 3, P. 239–245.

26. Clearfield A., Vaughan P.A. The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Cryst., 1956, 9, P. 555–558.

27. Walther C., Rothe J., Fuss M., Buchner S., Koltsov S., Bergmann T. Investigation of polynuclear Zr(IV) hydroxide complexes by nanoelectro-¨ spray mass-spectrometry combined with XAFS. Anal. Bioanal. Chem., 2007, 388, P. 409–431.

28. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(3), P. 405–416.

29. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews, 2014, 83(12), P. 1204–1222.


Рецензия

Для цитирования:


  . Наносистемы: физика, химия, математика. 2021;12(4):472-480. https://doi.org/10.17586/2220-8054-2021-12-4-472-480

For citation:


Omarov Sh.O. The effect of hydrolysis duration on the phase composition, texture, aggregation and agglomeration of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):472-480. https://doi.org/10.17586/2220-8054-2021-12-4-472-480

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)