Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Study of magnetic and optical transitions in MFe2O4 (M=Co, Zn, Fe, Mn) with spinel structure

https://doi.org/10.17586/2220-8054-2021-12-4-481-491

Abstract

Spinel ferrite (MFe2O4) nanoparticles were successfully synthesized by the coprecipitation method. X-ray diffraction technique was employed for structural analysis. Single-phase cubic spinel structure with an average crystallite size ranging from 5 – 20 nm was obtained for the prepared ferrites. The Fourier transform infrared spectra exhibits an absorption band at 550 cm−1, which is attributed to metal-oxygen bond vibrations at tetrahedral sites. The thermogravimetric analysis revealed the instability of MnFe2O4 and Fe3O4 above 500 C whereas CoFe2O4 is found to be the most stable ferrite. The hysteresis parameters demonstrate the superparamagnetic nature of the prepared nanoparticles with low coercivity except for CoFe2O4. The direct optical band gap energy derived from UV-visible spectra is calculated to be 2.82, 2.83, 2.81, and 2.44 eV for M=Co, Zn, Fe, and Mn respectively. The magnetic and optical properties show a strong dependence on cation site occupancy.

About the Authors

. Nitika
Department of Physics, SRM University
India

Delhi NCR, Sonepat, 131029.



Anu Rana
Department of Physics, SRM University
India

Delhi NCR, Sonepat, 131029.



Vinod Kumar
Department of Physics, NSUT
India

Dwarka, New Delhi, 110078.



References

1. Galvao W.S., Neto D., Freire R.M., Fechine P.B. Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical˜ applications. In solid state phenomena, 2016, 241, P. 139–176.

2. Valenzuela R. Novel applications of ferrites. Physics Research International, 2012.

3. Tatarchuk T., Bououdina M., Vijaya J.J., Kennedy L.J. Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In International Conference on Nanotechnology and Nanomaterials, 2016, August, P. 305–325.

4. Kombaiah K., Vijaya J.J., Kennedy L.J., Bououdina M. Optical, magnetic and structural properties of ZnFe2O4 nanoparticles synthesized by conventional and microwave assisted combustion method: a comparative investigation. Optik, 2017, 129, P. 57–68.

5. Brabers V.A.M. Progress in spinel ferrite research. Handbook of magnetic materials, 1995, 8, P. 189–324.

6. Mathew D.S., Juang R.S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal, 2007, 129(1-3), P. 51–65.

7. Amiri M., Salavati-Niasari M., Akbari A. Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Advances in Colloid and Interface Science, 2019, 265, P. 29–44.

8. Bao N., Shen L., Wang Y., Padhan P., Gupta A. A facile thermolysis route to monodisperse ferrite nanocrystals. Journal of the American Chemical Society, 2007, 129(41), P. 12374–12375.

9. Srinivas C., Kumar E.R., Tirupanyam B.V., Meena S.S., Bhatt P., Prajapat C.L., Sastry D.L. Study of magnetic behavior in co-precipitated Ni–Zn ferrite nanoparticles and their potential use for gas sensor applications. Journal of Magnetism and Magnetic Materials, 2020, 502, P. 166534.

10. Kannapiran N., Muthusamy A., Renganathan B., Ganesan A.R., Meena S.S. Magnetic, electrical and gas sensing properties of poly (ophenylenediamine)/MnCoFe2O4 nanocomposites. Applied Physics A, 2020, 126(12), P. 1–13.

11. Deepty M.Ch.S., Ramesh P.N., Mohan N.K., Singh M.S., Prajapat C.L., Sastry D.L. Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications. Sensors and Actuators B: Chemical, 2020, 316, P. 128127.

12. Andersen H.L., Saura-Muzquiz M., Granados-Miralles C., Can´ evet E., Lock N., Christensen M. Crystalline and magnetic structure–property´ relationship in spinel ferrite nanoparticles. Nanoscale, 2018, 10(31), P. 14902–14914.

13. Chand P., Vaish S., Kumar P. Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites. Physica B: Condensed Matter, 2017, 524, P. 53–63.

14. Bid S., Pradhan S.K. Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Materials Chemistry and Physics, 2003, 82(1), P. 27–37.

15. Rahman S., Nadeem K., Anis-ur-Rehman M., Mumtaz M., Naeem S., Letofsky-Papst I. Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceramics International, 2013. 39(5), P. 5235–5239.

16. Maaz K., Mumtaz A., Hasanain S.K., Ceylan A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. Journal of magnetism and magnetic materials, 2007, 308(2), P. 289–295.

17. Houshiar M., Zebhi F., Razi Z.J., Alidoust A., Askari Z. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials, 2014, 371, P. 43–48.

18. Vinosha P.A., Mely L.A., Jeronsia J.E., Krishnan S., Das S.J. Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile coprecipitation route. Optik, 2017, 134, P. 99–108.

19. Zipare K., Dhumal J., Bandgar S., Mathe V., Shahane G. Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties. Journal of Nanoscience and Nanoengineering, 2015, 1(3), P. 178–182.

20. Liu C., Zou B., Rondinone A.J., Zhang Z.J. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. The Journal of Physical Chemistry B, 2000, 104(6), P. 1141–1145.

21. Gholizadeh A. A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. Journal of the American Ceramic Society, 2017, 100(8), P. 3577–3588.

22. Kandpal N.D., Sah N., Loshali R., Joshi R., Prasad J. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, 2014.

23. Goodarz Naseri M., Saion E.B., Kamali A. An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. International Scholarly Research Notices, 2012.

24. Naik S.R., Salker A.V., Yusuf S.M., Meena S.S. Influence of Co2+ distribution and spin–orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. Journal of alloys and compounds, 2013, 566, P. 54–61.

25. Vasundhara K., Achary S.N., Deshpande S.K., Babu P.D., Meena S.S., Tyagi A.K. Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. Journal of Applied Physics, 2013, 113(19), P. 194101.

26. Patange S.M., Desai S.S., Meena S.S., Yusuf S.M., Shirsath S.E. Random site occupancy induced disordered Neel-type collinear spin align-´ ment in heterovalent Zn2+–Ti4+ ion substituted CoFe2O4. RSC advances, 2015, 5(111), P. 91482–91492.

27. Yadav S.P., Shinde S.S., Bhatt P., Meena S.S., Rajpure K.Y. Distribution of cations in Co1− xMnxFe2O4 using XRD, magnetization and Mossbauer spectroscopy.¨ Journal of Alloys and Compounds, 2015, 646, P. 550–556.

28. Hashim M., Shirsath S.E., Meena S.S., Mane M.L., Kumar S., Bhatt P., S¸enturk E. Manganese ferrite prepared using reverse micelle process:¨ Structural and magnetic properties characterization. Journal of Alloys and Compounds, 2015, 642, P. 70–77.

29. Kolhatkar A.G., Jamison A.C., Litvinov D., Willson R.C., Lee T.R. Tuning the magnetic properties of nanoparticles. International journal of molecular sciences, 2013, 14(8), P. 15977–16009.

30. Padervand M., Vossoughi M., Yousefi H., Salari H., Gholami M.R. An experimental and theoretical study on the structure and photoactivity of XFe2O4 (X= Mn, Fe, Ni, Co, and Zn) structures. Russian Journal of Physical Chemistry A, 2014, 88(13), P. 2451–2461.

31. Banerjee A., Blasiak B., Pasquier E., Tomanek B., Trudel S. Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T 2 contrast agents for high-field MRI. RSC advances, 2017, 7(61), P. 38125–38134.

32. Sebak A.A. Limitations of PEGylated nanocarriers: unfavourable physicochemical properties, biodistribution patterns and cellular and subcellular fates. Int. J. Pharm, 2018, 10, P. 6–12.

33. Patsula V., Horak D., Ku´ cka J., Mackovˇ a H., Lobaz V., Francov´ a P.,´ Sefc L. Synthesis and modification of uniform PEG-neridronate-modifiedˇ magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Scientific reports, 2019, 9(1), P. 1–12.

34. Cullity B.D. Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956.

35. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 1976, 32(5), P. 751–767.

36. Grimes N.W., Thompson P., Kay H.F. New symmetry and structure for spinel. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1983, 386(1791), P. 333–345.

37. Hwang L., Heuer A.H., Mitchell T.E. On the space group of MgAl2O4 spinel. Philosophical Magazine, 1973, 28(1), P. 241–243.

38. Burdett J.K., Price G.D., Price S.L. Role of the crystal-field theory in determining the structures of spinels. Journal of the American Chemical Society, 1982, 104(1), P. 92–95.

39. Arean C.O., Diaz E.G., Gonzalez J.R., Garcia M.V. Crystal chemistry of cadmium-zinc ferrites. Journal of Solid State Chemistry, 1988, 77(2), P. 275–280.

40. Gillot B., Jemmali F. Dependence of electrical properties in iron—cobalt, iron—zinc ferrites near stoichiometry on firing temperature and atmosphere. Physica status solidi (a), 1983, 76(2), P. 601–608.

41. Pathan A.T., Mathad S.N., Shaikh A.M. Infrared spectral studies of nanostructured Co2+-substituted Li-Ni-Zn ferrites. International Journal of Self-Propagating High-Temperature Synthesis, 2014, 23(2), P. 112–117.

42. Mohammed K.A., Al-Rawas A.D., Gismelseed A.M., Sellai A., Widatallah H.M., Yousif A., Shongwe, M. Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B: Condensed Matter, 2012, 407(4), P. 795–804.

43. Pereira C., Pereira A.M., Fernandes C., Rocha M., Mendes R., Fernandez-Garc´ ´ıa M.P., Freire C. Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chemistry of Materials, 2012, 24(8), P. 1496–1504.

44. Si S., Kotal A., Mandal T.K., Giri S., Nakamura H., Kohara T. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 2004, 16(18), P. 3489–3496.

45. Roca A.G., Marco J.F., Morales M.D.P., Serna C.J. Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. The Journal of Physical Chemistry C, 2007, 111(50), P. 18577–18584.

46. Mahdavi M., Ahmad M.B., Haron M.J., Namvar F., Nadi B., Rahman M.Z.A., Amin J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 2013, 18(7), P. 7533–7548.

47. Aijun H., Juanjuan L., Mingquan Y., Yan L.I., Xinhua P. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chinese Journal of Chemical Engineering, 2011, 19(6), P. 1047–1051.

48. Stoia M., Pacurariu C., Muntean E.C. Thermal stability of the solvothermal-synthesized MnFeˇ 2O4 nanopowder. Journal of Thermal Analysis and Calorimetry, 2017, 127(1), P. 155–162.

49. Umare S.S., Ningthoujam R.S., Sharma S.J., Shrivastava S., Kurian S., Gajbhiye N.S. Mossbauer and magnetic studies on nanocrystalline¨ NiFe2O4 particles prepared by ethylene glycol route. In ICAME, 2007, P. 649–657.

50. Limaye M.V., Singh S.B., Date S.K., Kothari D., Reddy V.R., Gupta A., Kulkarni S.K. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. The Journal of Physical Chemistry B, 2009, 113(27), P. 9070–9076.

51. Nandiyanto A.B.D., Oktiani R., Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 2019, 4(1), P. 97–118.

52. Pradeep A., Chandrasekaran G. FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Materials Letters, 2006, 60(3), P. 371– 374.

53. Bera P., Lakshmi R.V., Prakash B.H., Tiwari K., Shukla A., Kundu A.K., Barshilia H.C. Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFe2O4 and Co0.5M0.5Fe2O4 (M= Mn, Ni, and Zn). Physical Chemistry Chemical Physics, 2020, 22(35), P. 20087–20106.

54. Nikmanesh H., Kameli P., Asgarian S.M., Karimi S., Moradi M., Kargar Z., Salamati H. Positron annihilation lifetime, cation distribution and magnetic features of Ni 1- x Zn x Fe 2- x Co x O 4 ferrite nanoparticles. RSC Advances, 2017, 7(36), P. 22320–22328.

55. Carter C.B., Norton M.G. Using Magnetic Fields and Storing Data. Ceramic Materials: Science and Engineering, 2007, P. 598–618.

56. Szotek Z., Temmerman W. M., Kodderitzsch D., Svane A., Petit L., Winter H. Electronic structures of normal and inverse spinel ferrites from¨ first principles. Physical Review B, 2006, 74(17), P. 174431.

57. Neel L. Magnetic properties of ferrites; ferrimagnetism and antiferromagnetism.´ In Annales de physique, 1948, 12(3), P. 137–198.

58. Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, 1948.

59. Joshi G.P., Saxena N.S., Mangal R., Mishra A., Sharma T.P. Band gap determination of Ni-Zn ferrites. Bulletin of Materials Science, 2003, 26(4), P. 387–389.

60. Holinsworth B.S., Mazumdar D., Sims H., Sun Q.C., Yurtisigi M.K., Sarker S.K., Musfeldt J.L. Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Applied Physics Letters, 2013, 103(8), P. 082406.

61. Nitika, Rana A., Kumar V. Tailoring the Structural, Magnetic, Mechanical, and Thermal Properties of CoFe2O4 by Varying Annealing Temperature for High-Density Storage Devices. ECS Journal of Solid State Science and Technology, 2021.

62. Parishani M., Nadafan M., Dehghani Z., Malekfar R., Khorrami G.H.H. Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature. Results in physics, 2017, 7, P. 3619–3623.

63. Yuliantika D., Taufiq A., Hidayat A., Hidayat N., Soontaranon S. Exploring Structural Properties of Cobalt Ferrite Nanoparticles from Natural Sand. In IOP Conference Series: Materials Science and Engineering, 2019, April, 515(1), P. 012047.

64. Pawar C.S., Gujar M.P., Mathe V.L. Optical properties of spin-deposited nanocrystalline Ni-Zn ferrite thin films processed by sol-gel. Journal of Superconductivity and Novel Magnetism, 2017, 30(3), P. 615–625.


Review

For citations:


Nitika , Rana A., Kumar V. Study of magnetic and optical transitions in MFe2O4 (M=Co, Zn, Fe, Mn) with spinel structure. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):481-491. https://doi.org/10.17586/2220-8054-2021-12-4-481-491

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)