Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of core-shell titanium dioxide nanoparticles with water-soluble shell of poly(methacrylic acid)

https://doi.org/10.17586/2220-8054-2021-12-3-336-345

Abstract

The article is devoted to the covalent modification of the surface of titanium dioxide nanoparticles with polymethacrylic acid using the method of controlled atom transfer radical polymerization. For the first time, core-shell titanium dioxide nanoparticles with water-soluble shell of poly(methacrylic acid) were obtained.

About the Authors

Е. L. Krasnopeeva
Institute of Macromolecular Compounds, Russian Academy of Sciences; Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

Е.L. Krasnopeeva

St. Petersburg



E. Yu. Melenevskaya
Institute of Macromolecular Compounds, Russian Academy of Sciences
Russian Federation

E.Yu. Melenevskaya

St. Petersburg



O. A. Shilova
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

O. A. Shilova

St. Petersburg



A. M. Nikolaev
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

A. M. Nikolaev

St. Petersburg



A. V. Yakimansky
Institute of Macromolecular Compounds, Russian Academy of Sciences
Russian Federation

A.V. Yakimansky

St. Petersburg



References

1. Byrne C., Subramanian G., Pillai S.C. Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2018, 6, P. 3531–3555.

2. Colmenares J.C., Varma R.S., Lisowski P. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chemistry, 2016, 18, P. 5736–5750.

3. Krasilin A.A., Bodalyov I.S., et al. On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, P. 410–416.

4. Kolesnik I.V., Lebedev V.A., Garshev A.V. Optical properties and photocatalytic activity of nanocrystalline TiO2 doped by 3d-metal ions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, P. 401–409.

5. Kozlov D.A., Lebedev V.A., et al The microstructure effect on the Au/TiO2 and Ag/TiO2 nanocomposites photocatalytic activity. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, P. 266–278.

6. Szanyi J., Kwak J.H., Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation. Journal of Molecular Catalysis A: Chemistry, 2015, 406, P. 213–223.

7. Ulyanova E.S., Zamyatin D.A., Kolosov V.Yu., Shalaeva E.V. Visible light photoluminescence in TiO2/CdS nanopowders synthesized by sol-gel route: effect of gel aging time. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11, P. 480–487.

8. Zavialova A.Yu., Bugrov A.N., et al Structure and photoluminescent properties of TiO2:Eu3+ nanoparticles synthesized under hydro and solvothermal conditions from different precursors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, P. 361–373.

9. Wang Y., Sun C.,et al. The Application of Nano-TiO2 Photo Semiconductors in Agriculture. Nanoscale Research Letters, 2016, 11, 529.

10. Morozova P.A., Petukhov D.I. Preparation of Au/TiO2/Ti memristive elements via anodic oxidation. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8, P. 823–829.

11. Ganeshraja A.S., Anbalagan K. Participation of nanocrystalline TiO2 Surface in the electron transfer between semiconductor solid and adsorbed cobalt(III)-RPY complex. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4, P. 276–287.

12. Gazquez M.J., Bolivar J P., Garcia-Tenorio R., Vaca F. A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 2014, 5, P. 441–458.

13. Dimkpa C.O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life. Journal of Basic Microbiology, 2014, 54, P. 889–904.

14. Peller J.,Wies O., Kamat P.V. Hydroxyl Radical’s Role in the Remediation of a Common Herbicide, 2,4-Dichlorophenoxyacetic Acid (2,4-D). Journal of Physical Chemistry A, 2004, 108, P. 10925–10933.

15. Hou J., Wang X., et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of environmental sciences (China), 2019, P. 7540–7553.

16. Guan H.N., Chi D.F., Yu J., Li X.C. A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pesticide Biochemistry and Physiology, 2008, 92, P. 83–91.

17. Ahmed S., Rasul M.G., Brown R., Hashib M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater. J. Environ. Manage, 2011, 92, P. 311–330.

18. Parida K.M., Sahu N., et al. Preparation, characterization, and photo-catalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. J Colloid Interface Sci., 2008, 318, P. 231–237.

19. Aragay G., Pino F., Merkoc¸ I.A. Nanomaterials for sensing and destroying pesticides. Chemical Reviews, 2012, 112, P. 5317–5338.

20. Lee K., Ku H., Pak D. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates. Chemosphere, 2016, 149, P. 114–120.

21. Devipriya S., Yesodharan S. Photocatalytic degradation of pesticide contaminants in water. Solar Energy Materials & Solar Cells, 2005, 86, P. 309–348.

22. Rabindranathan S., Devipriya S., Yesodharan S. Photocatalytic degradation of phosphamidon on semiconductor oxides. Journal of Hazardous Materials, 2003, 102, P. 217–229.

23. Lhomme L., Brosillon S., Wolbert D. Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere, 2008, 70, P. 381–386.

24. Marien C.B.D., Cottineau T., Robert D., Drogui P. TiO2 nanotube arrays: influence of tube length on the photocatalyticdegradation of Paraquat. Applied Catalysis B: Environmental, 2016, 194, P. 1–6.

25. Bzdon S., Goralski J., et al. Radiation-induced synthesis of Fe-doped TiO2: characterization and catalytic properties. Radiation Physics and Chemistry, 2012, 81, P. 59–63.

26. Attarchi N., Montazer M., Toliyat T. Ag/TiO2/β-CD nano composite: preparation and photo catalytic properties for methylene blue degradation. Applied Catalysis A: General, 2013, 467, P. 107–116.

27. Zhang X., Wu F., et al. Photocatalytic degradation of 4,4’-biphenol in TiO2 suspension in the presence of cyclodextrins: a trinity integrated mechanism. Journal of Molecular Catalysis A: Chemistry, 2009, 301, P. 134–139.

28. Ramos-Delgado N.A., Gracia-Pinilla M.A., et al. Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. Journal of Hazardous Mater, 2013, 263, P. 36–44.

29. Vamathevan V., Amal R., et al. Silver metallization of titania particles: effects on photoactivity for the oxidation of organics. Journal of Gastrointestinal Surgery, 2015, 19, P. 1–6.

30. Behnajady M.A., Modirshahla N., Hamzavi R. Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 2006, 133, P. 226–232.

31. Leghari S.A.K., Sajjad S., Chen F., Zhang J. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chemical Engineering Journal, 2011, 166, P. 906–915.

32. Yao K.S., Wang D.Y., et al. Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens. Surface & Coatings Technology, 2007, 201, P. 6886–6888.

33. Yao K.S., Wang D.Y., et al. Photocatalytic disinfection of phytopathogenic bacteria by dye-sensitized TiO2 thin film activated by visible light. Surface & Coatings Technology, 2007, 202, P. 1329–1332.

34. Cui H.X., Yang G.C., et al. Biological effects of PAS TiO2 sol on disease control and photosynthesis in cucumber (Cucumis sativus L). Australian Journal of Crop Science, 2013, 7, P. 99–103.

35. Shilova O.A., Khamova T.V., et al. Synthesis and Research of Functional Layers Based on Titanium Dioxide Nanoparticles and Silica Sols Formed on the Surface of Seeds of Chinese Cabbage. Russian Journal of Applied Chemistry, 2020, 93 (1), P. 25–34.

36. Khot L.R., Ehsani R., et al. Applications of nanomaterials in agricultural production and crop protection. A review. Crop Protection, 2012, 35, P. 64–70.

37. Zheng L., Hong F., Lu S., Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 2005, 104, P. 83–91.

38. Song G., Gao Y., et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environmental Toxicology and Chemistry, 2012, 31, P. 2147–2152.

39. Yang F., Liu C., et al. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research, 2007, 119, P. 77–88.

40. Raliya R., Biswas P., Tarafdar J.C., TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L). Biotechnology Reports, 2015, 5, P. 22–26.

41. Palmqvist N.G.M., Bejai S., et al. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Scientific Reports, 2015, 5, 10146.

42. Wang Y., Liu L., et al. Synthesis of Modified TiO2 Nanoparticles with Polyacrylonitrile and Poly(hydroxyethyl acrylate) via ATRP. Chemistry Select, 2020, 5, P. 4695–4700.

43. Kopec M., Spanjers J., et al. Surface-initiated ATRP from polydopamine-modified TiO2 nanoparticles. European Polymer Journal, 2018, 106, P. 291–296.

44. Ensafi A.A., Khoddami E., Nabiyan A., Rezaei B. Study the role of poly(diethyl aminoethyl methacrylate) as a modified and grafted shell for TiO2 and ZnO nanoparticles, application in flutamide delivery. Reactive & Functional Polymers, 2017, 116, P. 1–8.

45. Park J.T., Lee C.S., Park C.H., Kim J.H. Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization. Chemical Physics Letters, 2017, 685, P. 119–126.

46. Maeda S., Fujita M., et al. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & Interfaces, 2016, 8, P. 34762–34769.

47. Mai T.B., Tran T.N., et al. Synthesis and characterization of poly(oligoethyleneglycol methacrylate)-g-TiO2 nanocomposites via surfaceinitiated ARGET ATRP. Molecular Crystals and Liquid Crystals, 2014, 602, P. 118–125.

48. Liu L., Chen H., Yang F. Enhancing membrane performance by blending ATRP grafted PMMA-TiO2 or PMMA-PSBMA-TiO2 in PVDF. Separation and Purification Technology, 2014, 133, P. 22–31.

49. Zhang G., Lu S., et al. Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. Journal of Membrane Science, 2013, 436, P. 163–173.

50. Cui W.-W., Tang D.-Y., Gong Z.-L. Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2013, 223, P. 206–213.

51. Gong Z.-L., Tang D.-Y., Guo Y.-D. The fabrication and self-flocculation effect of hybrid TiO2 nanoparticles grafted with poly(Nisopropylacrylamide) at ambient temperature via surface-initiated atom transfer radical polymerization. Journal of Materials Chemistry, 2012, 22, P. 16872–16879.

52. Chen H., Pan S., et al. Preparation of thermo-responsive superhydrophobic TiO2/poly(N-isopropylacrylamide) microspheres. Applied Surface Science, 2012, 258, P. 9505–9509.

53. Xiong L., Liang H., Wang R., Chen L. A novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP. Journal of Polymer Research, 2011, 18, P. 1017–1021.

54. Park J.T., Koh J.H., et al. Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2-PSSA nanoparticles. International Journal of Hydrogen Energy, 2011, 36, P. 1820–1827.

55. Akpolat L.B., Cakir B.A., Topel O., Hoda N. Synthesis of TiO2 nanoparticles by self-assembling reverse micelle cores of PS-b-PAA for functional textile applications. Materials Research Bulletin, 2015, 64, P. 117–122.

56. Shilova O.A., Panova G.G., et al. Properties, and Phytoprotective Functions of Titanium Dioxide Nanopowders and Their Aqueous Suspensions. Russian Journal of Inorganic Chemistry, 2021, 66, P. 765–772.

57. Mueller R., Kammler H.K., Wegner K., Pratsinis S.E. OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir, 2003, 19, P. 160–165.

58. Ou B., Li D., et al. Functionalized TiO2 nanoparticle containing isocyanate groups. Material Chemistry and Physics, 2012, 135, P. 1104–1107.

59. Zhao J., Milanova M., Warmoeskerken M.M.C.G., Dutschk V. Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, P. 273– 279.

60. Yakimansky A.V., Meleshko T.K., et al. Novel Regular Polyimide-graft-Poly(methacrylic acid) Brushes: Synthesis and Possible Applications as Nanocontainers of Cyanoporphyrazine Agents for Photodynamic Therapy. Journal of Polymer Science, Part A: Polymer Chemistry, 2013, 51, P. 4267–4281.

61. Kashina A.V., Meleshko T.K., et al. Synthesis of Pentablock Copolymers of the Mixed Linear-Brush Topology by Controlled Radical Polymerization and Ring-Opening Polymerization Reactions. Polymer Science, Series C, 2019, 61, P. 174–185.

62. Pugachevskii M.A. Ultraviolet absorption spectrum of laser-ablated titanium dioxide nanoparticles. Technical Physics Letters, 2013, 39, P. 36–38.

63. Raghuraman G.K., R¨uhe J., Dhamodharan R. Grafting of PMMA brushes on titania nanoparticulate surface via surface-initiated conventional radical and “controlled” radical polymerization (ATRP). Journal of Nanoparticle Research, 2008, 10, P. 415–427.


Review

For citations:


Krasnopeeva Е.L., Melenevskaya E.Yu., Shilova O.A., Nikolaev A.M., Yakimansky A.V. Synthesis of core-shell titanium dioxide nanoparticles with water-soluble shell of poly(methacrylic acid). Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):336-345. https://doi.org/10.17586/2220-8054-2021-12-3-336-345

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)