Catalytic fullerenol action on Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress
https://doi.org/10.17586/2220-8054-2021-12-3-346-362
Abstract
Catalytic fullerenol C60(OH)24 action on Chlorella Vulgaris growth in the conditions of limited resource growth base and in the conditions of oxidative stress are reported. Chlorella growth or oppression were investigated in open transparent in the visible area cylindrical polystyrene test tubes at room temperature under illumination by standard incandescent lamp for the period 9 days. Catalyst concentration were varied in the range 0.01 – 1.0 g/dm3. Oxidative stress was organized by the addition of hydrogen peroxide with the concentration 1.0 g/dm3. Chlorella Vulgaris concentrations were determined by the method of turbidimetry – by the determination of optical density of scattered light in the direction of propagation of the incident beam at wavelength 664 nm. Obtained kinetic data were processed by the method of formal classical kinetics. The pseudo-order of the process Chlorella Vulgaris growth in the conditions of limited resource, according to Chlorella, is -2; the curve of the dependence of Chlorella concentration against time is concave at all fullerenol concentrations. The pseudo-order of the process Chlorella Vulgaris suppression in the conditions of oxidative stress, according to Chlorella, is +2, the curve of the dependence of Chlorella concentration against time is convex at all fullerenol concentrations. The kinetics of Chlorella Vulgaris growth in the conditions of limited resource was also processed by model Verhulst equation of logisitic growth, and this equation describes the kinetics as accurately and adequately as possible. The authors have established, that in the case of the conditions of limited resource, fullerenol at low concentrations (less than 0.1 g/dm3) catalyzes-accelerates Chlorella growth and at higher concentrations (0.1 – 1.0 g/dm3) inhibits Chlorella growth. For the conditions of oxidative stress, authors have established, that at all fullerenol concentrations, it considerably inhibits suppression-depopulation of Chlorella processes, so fullerenol proves enough strong anti-oxidant action. It was demonstrated, that Verhulst equation maybe satisfactory used for the description of different natural process.
About the Authors
L. V. GerasimovaRussian Federation
L.V. Gerasimova
Moskovsky prospect, 26, Saint Petersburg, 190013
N. A. Charykov
Russian Federation
N. A. Charykov
Moskovsky prospect, 26, Saint Petersburg, 190013
ul. Professora Popova 5, 197376, Saint Petersburg
K. N. Semenov
Russian Federation
K.N. Semenov
Moskovsky prospect, 26, Saint Petersburg, 190013
7/9 Universitetskaya emb., Saint Petersburg, 199034
V. A. Keskinov
Russian Federation
V. A. Keskinov
A. V. Kurilenko
Russian Federation
A.V. Kurilenko
Moskovsky prospect, 26, Saint Petersburg, 190013
Zh. K. Shaimardanov
Kazakhstan
Zh. K. Shaimardanov
A. K. Protozanov Street, 69, UstKamenogorsk city, 070004
B. K. Shaimardanova
Kazakhstan
B. K. Shaimardanova
A. K. Protozanov Street, 69, UstKamenogorsk city, 070004
N. A. Kulenova
Kazakhstan
N. A. Kulenova
A. K. Protozanov Street, 69, UstKamenogorsk city, 070004
D. G. Letenko
Russian Federation
D. G. Letenko
2nd Krasnoarmeiskaya St. 4, 190005, Saint Petersburg
A. Kanbar
Russian Federation
Ayat Kanbar
Moskovsky prospect, 26, Saint Petersburg, 190013
References
1. Sidorov L.N., Yurovskaya M.A., et al. Fullerenes. Moscow, Ekzamen, 2005, 688 p. (in Rus).
2. Cataldo F., Da Ros T. Carbon Materials. Chemistry and Physics: Medicinal Chemistryand Pharmacological Potential of Fullerenes and Carbon Nanotubes. Springer, 2008.
3. Piotrovskii L.B., Kiselev O.I. Fullerenes in Biology. Rostok, Saint-Petersburg, 2006, 335 p. (in Rus).
4. Djordjevic A., Bogdanovic G., Dobric S. Fullerenes in biomedicine. Journal of B.U.ON.: official journal of the Balkan Union of Oncology, 2006, 11(4), P. 391–404.
5. Semenov K.N., Meshcheriakov A.A., et al. Physico-chemical and biological properties of C60 – L-hydroxyproline water solutions. RSC Advances, 2017, 7. P. 15189–15200.
6. Panova G.G., Ktitorova I.N., et al. Impact of polyhy-droxy fullerene (fullerol or fullerenol) on growth and biophysi-cal characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regulation. International Journal on Plant Growth and Development, 2016, 79(3), P. 309–318.
7. Panova G.G., Semenov K.N., et al. Water soluble fullerene derivatives and silica nano-compositions as perspec-tive nanomaterials in plant growing. Agro-physics, 2015, 4, P. 37–48. (in Rus).
8. Panova G.G., Kanash E.V., et al. Fullerene deriva-tives stimulate production process, growth and stability to oxidation stress for wheat and barley plants. Agricultural Biology, 2018, 53(1), P. 38–49. (in Rus).
9. Shevchenko D.S., Rakhimova O.V., Charykov N.A., Semenov K.N., Keskinov V.A., Vorobiev A.L., Kulenova N.A., Onalbaeva Zh.S. Synthesis, identification and biotesting of water soluble octo-adduct of fullerene C60 and arginine C60(C6H12NaN4O2)8H8. Rep. SPbGTI(TU), 2018, 45, P. 77–81.
10. Panova G.G., Serebryakov E.B., Semenov K.N., Charykov N.A., Shemchuk O.S., Andrusenko E.V., Kanash E.V., Khomyakov Y.V., Shpanev A.M., Dulneva L.L., Podolsky N.E., Sharoyko V.V. Bioactivity Study of the C60-L-Threonine Derivative for Potential Application in Agriculture. Journal of Nanomaterials, 2019, P. 1-13.
11. Pochkaeva E.I., Podolsky N.E., Zakusilo D.N., Petrov A.V., Charykov N.A., Vlasov T.D., Penkova A.V., Vasina L.V., Murin I.V., Sharoyko V.V., Semenov K.N. Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application. Progress in Solid State Chemistry, 2020, 57, P. 100255.
12. Shevchenko D.S., Rakhimova O.V., Podolsky N.E., Charykov N.A., Semenov K.N., Keskinov V.A., Shaimardanov Zh.K., Shaimardanova B.K., Kulenova N.A., Onalbaeva Zh.S. Toxicity of water soluble octo-adduct of fullerene C60 and arginine C60(C6H12NaN4O2)8H8. Rep. SPbGTI(TU), 2019, 49(75), P. 96–101.
13. Andrievsky G., Klochkov V., Derevyanchenko L. Is the C60 fullerene molecule toxic?! Fullerenes, Nanotubes, and Carbon Nanostructures, 2005, 13(4), P. 363–376.
14. Aschberger K., Johnston H.J., Stone V., et al. Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regulatory Toxicology and Pharmacology, 2010, 58(3), P. 455–473.
15. Andreev S.M., Babakhin A.A., Petrukhina A.O., Romanova V.S., Parnes Z.N., Petrov R.V. Immuno-henic and allergenic properties of conjugates of fullerenes with amino-acids. Rep. Rus. Acad. of Sciences, 2000, 370(2), P. 387–399.
16. Baati T., Bourasset F., Gharbi N., et al. The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene. Biomaterials, 2012, 33(19), P. 4936–4946.
17. Baker G.L., Gupta A., Clark M.L., et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicological sciences, 2008, 101(1), P. 122–131.
18. Costa C.L.A., Chaves I.S., Ventura -Lima J., et al. In vitro evaluation of coexposure of arsenicum and an organic nanomaterial (Fullerene C60) in zebrafish hepatocytes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012, 155(2), P. 206–212.
19. Jia G., et al. Cytotoxicity of carbon nanomaterials: singl-wall nanotube, multi-wall nanotube, and fullerene. Environmental science & technology, 2005, 39(5), P. 13780–1383.
20. Jung H., Wang C. U., Jang W. Nano-C60 and hydroxylated C60: Their impacts on the environment. Toxicology and vironmental Health Sciences, 2009, 1(2), P. 132–139.
21. Gao J., Wang H.L., Shreve A., Iyer R. Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications. Toxicology and applied pharmacology, 2010, 244(2), P. 130–143.
22. Horie M., Nishio K., Kato H., et al. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion. Journal of biochemis-try, 2010, 148(3), P. 289–298.
23. Hendrickson O.D., Zherdev A.V., Gmoshinskii I.V., Dzantiev B.B. Fullerenes: in vivo studies of biodistribution, toxicity, and biological action. Nanotechnologies in Russia, 2014, 9(11-12), P. 601–617.
24. Hendrickson O.D., Morozova O.V., Zherdev A.V., et al. Study of distribution and biological effects of fullerene C60 after single and multiple intragastrical administrations to rats. Fullerenes, Nanotubes and Car-bon Nanostructures, 2015, 23(7), P. 658–668.
25. Kolosnjaj J., Szwarc H., Moussa F.Toxicity studies of fullerenes and derivatives. Bio-Applications of nanoparticles, 2007, P. 168–180.
26. Kyzyma E.A., et al. Structure and toxicity of aqueous fullerene C60 solutions. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2015, 9(1), P. 1-5.
27. Moussa F., Chretien P., et al. The influence of C60 powders on cultured human leukocytes. Full. Sci. Technol., 1995, 3, P. 333–342.
28. Moussa F., Trivin F., Ceolin R., et al. Early effects of C60 Administration in Swiss Mice: A Preliminary Account for In Vivo C60 Toxicity. Fullerene Science and Technology, 1996, 4(1), P. 21–29.
29. Orlova M.A., Trofimova T.P., Orlov A.P., et al. Fullerene derivatives as modulators of cell proliferation and apoptosis. New directions in medicine science. Oncohematology, 2012, 4, P. 7–10.
30. Prylutska S.V., Matyshevska O.P., Golub A. at. al. Study of C60 fulllerenes and C60 – containing composites cytotoxicity in vitro. Materials Science and Engineering: C, 2007, 7(5), P. 1121–1124.
31. Piotrovskiy L.B. Fullerenes in the design of medicinal substancies. Russian Nanotechnologies, 2007, 2(7-8). P. 6-18.
32. Rajagopalan P., Wudl F., Schinazi R.F., Boudinot F.D. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrobial agents andchemotherapy, 1996, 40(10), P. 2262–2265.
33. Sayes C.M., Marchione A.A., Reed K.L., Warheit D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano letters, 2007, 7(8), P. 2399–2406.
34. Trpkovic A., Todorovic, Markovic B., Kleut D., et al. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles. Nanotechnology, 2010, 21(37), P. 37510.
35. Trpkovic A., Todorovic, Markovic B., Trajkovic V. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Archives of toxicology, 2012, 86(12), P. 1809–1827.
36. Yamago S., Tokuyama H., Nakamura E., et al. In vivo biological behavior of a water-miscible fullerene: 14 C labeling, absorption, distribution, excretion and acute toxicity. Chemistry & biology, 1995, 2(6), P. 385–389.
37. Ueng T.H., Kang J.J., Wang H.W., et al. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicology letters, 1997, 93(1), P. 29–37.
38. Shipelin V.A., Arianova E.A., Trushina E.N., et al. Hygienic characteristic of fullerene C60 while it’s introducing into gastrointestinal tract of rats. Hygiene and sanitation, 2012, 2, P. 90–94.
39. Shipelin V.A., Avreneva L.I., Guseva G.V., et al. Characteristic of oral toxicity of fullerene C60 for rats in 92-days experiment. Nutrition issues, 2012, 81(5), P. 20–27.
40. Vengerovich N.G., Tyunin M.A., Antonenkova E.V., et al. Biological activity of nano-bio-composites fullerene C60. Immunology, 2012, 12, P. 161–177.
41. Kyzyma E.A., Tomchuk A.A., Bulavin L.A., Petrenko V.I., Almasy L., Korobov M.V., Volkov D.S., Mikheev I.V., Koshlan I.V., Koshlan N.A., Blaha P., Avdeev M.V., Aksenov V.L. Structure and toxicity of aqueous fullerene C60 solutions. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, 9(1), P. 1–5.
42. Sayes C.M., Fortner J.D., Guo W., Lyon D., Boyd A.M., Ausman K.D., Tao Y.J., Sitharaman B., Wilson L.J., Hughes J.B., West J.L., Colvin V.L.. The differential cytotoxicity of watersoluble fullerenes. Nano Lett., 2004, 4(10), P. 1881–1887.
43. Gao J., Wang Y., Folta K.M., Krishna V., Bai W., Indeglia P., Georgieva A., Nakamura H., Koopman B., Moudgil B. Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS ONE, 2011, 6(5), P. 1–8.
44. Djordjevicand A., Bogdanovic G. Fullerenol: anewnanopharmaceutic? Arch. Oncol., 2008, 16(3–4), P. 42–45.
45. Srdjenovic B., Milic-Torres V., Grujic N., Stankov K., Djordjevic A., Vasovic V. Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin. Toxicol. Mech. Method, 2010, 20(6), P. 298–305.
46. Jacevic V., Djordjevic A., Srdjenovic B., Milic-Tores V., Segrt Z., Dragojevic-Simic V., Kuca K. Fullerenol nanoparticles prevents doxorubicininduced acute hepatotoxicity in rats. J. Experimental and Molecular Pathology, 2017, 3.
47. Eropkin M.Yu., Melenevskaya E.Yu., Nasonova K.V., Bryazzhikova T.S., Eropkina E.M., Danilenko D.M., Kiselev O.I. Synthesis and biological activity of fullerenols with various contents of hydroxyl groups. Pharm. Chem. J., 2013, 47(2), P. 87–91.
48. Golomidova I., Bolshakova O., Komissarov A., Sharoyko V., Slepneva E., Slobodina A., Latypova E., Zherebyateva O., Tennikova T., Sarantseva S. The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster. J. Biochemical and Biophysical Research Communications, 2019,P. 1-6.
49. Tyurin D.P., Kolmogorov F.S., Cherepkova I.A., Charykov N.A., Semenov K.N., Keskinov V.A., Safyannikov N.M., Pukharenko Yu.V., Letenko D.G., Segeda T.A., Shaimardanov Z. Antioxidant properties of fullerenol-d. Nanosystems: Physics, Chemistry, mathematics, 2018, 9(6), P. 798–810.
50. Podolsky N.E., Marcos M.A., Cabaleiro D., Semenov K.N., Lugo L., Petrov A.V., Charykov N.A., Sharoyko V.V., Vlasov T.D., Murin I.V. Physico-chemical properties of C60(OH)22-24 water solutions: density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. of Mol. Liq, 2019, 278, P. 342–355.
51. Tyurin D.P., Kolmogorov S.F., Cherepkova I.A., Charykov N.A., Semenov K.N., Keskinov V.A., Saf’yannikov N.M., Pukharenko Yu.V., Letenko D.G., Shaimardanov Zh.K., Shaimardanova B.K. Anti-oxidant properties of octo-adduct of fullerene C60 and L-arginine (C60(C6H13N4O2)8H8. Rep SPbGTI(TU), 2019, 49(75), P. 70–78.
52. Grigoriev V.V., Petrova L.N., et al. Antioxidant properties of water soluble amino acid derivatives of fullerenes and their role in the inhibition of herpes virus infection. Rus. Chem. Bull. Int. Ed., 2011, 60, P. 1172–1176.
53. Mirkov S.M., Djordjevic, A.N., et al. Nitric oxidescavenging activity of polyhydroxylated fullerenol, C60OH24. Nitric Oxide, 2004, 11, P. 201–207.
54. Anderson R., Barron A.R. Reaction of hydroxyfullerene with metal salts: a route to remediation and immobilization. J. Am. Chem. Soc., 2005, 127(30), P. 10458–10459.
55. Djordjevic A., Srdjenovic B., et al. Review of Synthesis and Antioxidant Potential of Fullerenol Nanoparticles. Journal of Nanomaterials, 2015, P. 567073(15).
56. Lao F., Chen L., Li W., et al. Fullerene nanoparticles selectively enter oxidationdamaged cerebral microvessel endothelial cells and inhibit JNKrelated apoptosis. ACS Nano, 2009, 3(11), P. 3358–3368.
57. Yin J.J., Lao F., Fu P.P., et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30(4), P. 611–621.
58. Caputo F., De Nicola M., Ghibelli L. Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology, 2014, 92(1), P. 112–130.
59. Djordjevic A., Canadanovic Brunet J.M., VojinovicMiloradov M., Bogdanovic G. Antioxidant properties and hypothetic radical mechanism of fullerenol C60(OH)24. Oxidation Communications, 2004, 27 (4), P. 806–812.
60. Kokubo K. WaterSoluble SingleNano Carbon Particles: Fullerenol and Its Derivatives. InTech, 2012.
61. Kato S., Aoshima H., Saitoh Y., Miwa N. Highly hydroxylated or cyclodextrinbicapped Watersoluble derivative of fullerene: the antioxidant ability assessed by electron spin resonance method and carotene bleaching assay. Bioorganic and Medicinal Chemistry Letters, 2009, 19(18), P. 5293–5296.
62. Ueno H., Yamakura S., et al. Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using carotene bleaching assaycarotene bleaching assay. Journal of Nanomaterials, 2014, 2014, P. 802596, P. 7.
63. Semenov K.N., Charykov N.A., Keskinov V.A., et al. Solubility C60Brn (n = 6, 8, 24) in organic solvents. Rus. J. Phys. Chem. A, 2009, 83(11), P. 1935–1940.
64. Semenov K.N., Charykov N.A., Axel’rod B.M. Solubility of Bromderivatives C60Brn (n = 6, 8, 24) in 1-Chloronaphthalene and 1- Bromonaphthalene In Temperature Range (10 to 60)°C. J. Chem. Eng. Data., 2010, 55, P. 2373–2378.
65. Verhulst P.F. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mat´ematique et physiqu, 1838, 10, P. 113– 121.
66. Verhulst P.F. Recherches Math´ematiques sur La Loi ’Accroissement de la Population Nouveaux M´emoires de ’Acad´emi Royale des Sciences et Belles-Lettres de Bruxelles, 18, Art. 1, 1-45, 1845 (Mathematical Researches into the Law of Population Growth Increase).
Review
For citations:
Gerasimova L.V., Charykov N.A., Semenov K.N., Keskinov V.A., Kurilenko A.V., Shaimardanov Zh.K., Shaimardanova B.K., Kulenova N.A., Letenko D.G., Kanbar A. Catalytic fullerenol action on Chlorella growth in the conditions of limited resource base and in the conditions of oxidation stress. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):346-362. https://doi.org/10.17586/2220-8054-2021-12-3-346-362