Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and magnetic properties of cobalt ferrite nanoparticles formed under hydro and solvothermal conditions

https://doi.org/10.17586/2220-8054-2021-12-4-492-504

Abstract

Cobalt ferrite nanoparticles were synthesized both in hydro and in solvothermal conditions from Co and Fe salts of different chemical nature (nitrates and chlorides) taken in a 1:2 cation ratio. Varying the chemical prehistory, synthesis temperature, isothermal holding time, and the reaction medium composition made it possible to obtain a set of CoxFe3−xO4 nanoparticles of different average diameters and isomorphic substitution degree x. The resulting nanoparticles’ elemental composition, crystal structure, sizes, and magnetic properties were determined using EDX analysis, X-ray diffraction, transmission electron microscopy, and SQUID magnetometry. The temperature dependences of the coercivity, remanent magnetization, squareness on both the average diameter and the stoichiometry of nanoparticles are considered. CoxFe3−xO4 nanocrystals ranged from 11 to 29 nm were single magnetic domains and showed ferrimagnetic behavior at room temperature. The hardest magnetic nanoparticles with maximum squareness values in the high-temperature region were formed with x = 0.79 using solvothermal treatment of cobalt and iron nitrates at 250 C, 7 MPa for 10 hours.

About the Authors

B. V. Vasil’ev
Institute of Macromolecular Compounds RAS; Saint Petersburg Electrotechnical University “LETI”
Russian Federation

31, Bolshoy pr., 199004 Saint Petersburg;

5, ul. Professora Popova,  197376 Saint Petersburg.



R. Yu. Smyslov
Institute of Macromolecular Compounds RAS
Russian Federation

31, Bolshoy pr., 199004 Saint Petersburg.



D. A. Kirilenko
Ioffe Institute RAS; ITMO University
Russian Federation

26, Politekhnicheskaya ul., 194021 Saint Petersburg;

49, Kronverskii avenue,  197101 Saint Petersburg.



A. N. Bugrov
Institute of Macromolecular Compounds RAS; Saint Petersburg Electrotechnical University “LETI”
Russian Federation

31, Bolshoy pr., 199004 Saint Petersburg;

5, ul. Professora Popova,  197376 Saint Petersburg.



References

1. Perales-Perez O., Cede´ no-Mattei Y. Optimizing processing conditions to produce cobalt ferrite nanoparticles of desired size and magnetic.˜ Magnetic Spinels - Synthesis, Properties and Applications, Mohindar Singh Seehra, IntechOpen, 2017.

2. Lopez-Ortega A. Lottini E., Fernandez C.D.J., Sangregorio C. Exploring the magnetic properties of cobalt ferrite nanoparticles for the devel-´ opment of a rare-earth-free permanent magnet. Chem. Mater., 2015, 27, P. 4048–4056.

3. Kumar P., Pathak S., Singh A., Kuldeep, Khanduri H., Wang X., Basheed G.A., Pant R.P. Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3−xO4 mixed ferrite nanomagnetic fluids. Mater. Chem. Phys., 2021, 265, P. 124476.

4. Goh S.C., Chia C.H., Zakaria S., Yusoff M., Haw C.Y., Ahmadi Sh., Huang N.M., Lim H.N. Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nano crystals without subsequent calcinations. Mater. Chem. Phys., 2010, 120, P. 31–35.

5. Labchir N., Hannour A., Aithssi A., Vincent D., Ganster P., Ihlal A. Controlled electrochemical growth and magnetic properties of CoFe2O4 nanowires with high internal magnetic field. J. Alloys Compd., 2021, 868, P. 159196.

6. Suginoto M. The past, present, and future of ferrites. J. Am. Ceram. Soc., 1999, 82, P. 269.

7. Karthick R., Ramachandran K., Srinivasan R. Study of Faraday effect on Co1−xZnxFe2O4 nanoferrofluids. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 624–628.

8. Manohar A., Geleta D.D., Krishnamoorthi C., Lee J. Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceramics International, 2020, 46(18), P. 28035-28041.

9. Javed F., Abbas M.A., Asad M.I., Ahmed N., Naseer N., Saleem H., Errachid A., Lebaz N., Elaissari A., Ahmad N.M. Gd3+ doped CoFe2O4 nanoparticles for targeted drug delivery and magnetic resonance imaging. Magnetochemistry, 2021, 7, P. 47.

10. Li Y., Lu X., Yang S., Duan W., Zhang Y., Zhou C., Li K., Zhang Y., Shi Q. Synthesis of monodisperse ferromagnetic CoxFe3−xO4 colloidal particles with magnetically tunable optical properties. CrystEngComm, 2019.

11. Shirsath S.E., Liu X., Yasukawa Y., Li S., Morisako A. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Scientific Reports, 2016,6, P. 30074.

12. Long N.V., Yang Y., Teranishi T., Thi C.M., Cao Y., Nogami M. Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4 and heat treatment: new micro and nanoscale structures. RSC Adv., 2015, 5, P. 56560–56569.

13. Yasemian A.R., Kashi M.A., Ramazani A. Exploring the effect of Co concentration on magnetic hyperthermia properties of CoxFe3−xO4 nanoparticles. Mater. Res. Express, 2020, 7, P. 016113.

14. Dehsari H.S., Asadi K. The impact of stoichiometry and size on magnetic properties of cobalt-ferrite nanoparticles. J. Phys. Chem. C, 2018.

15. Gandha K., Elkins K., Poudyal N., Liu J.P. Synthesis and characterization of CoFe2O4 nanoparticles with high coercivity. Journal of Applied Physics, 2015, 117, P. 17A736.

16. Artus M., Tahar L.B., Herbst F., Smiri L., Villain F., Yaacoub N., Gren‘eche J.-M., Ammar S., Fi’evet F. Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol. J. Phys.: Condens. Matter., 2011, 23, P. 506001.

17. Liu C., Rondinone A.J., Zhang Z.J.Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl. Chem. 2000, 72(1,2), P. 37.

18. Song Q., Zhang Z.J. Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals. J. Phys. Chem. B, 2006, 110, P. 11205–11209.

19. Maaz K., Mumtaz A., Hasanain S.K., Ceylan A Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater., 2007, 30(8), P. 289–295.

20. Shyamaldas, Bououdina M., Manoharan C. Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 493, P. 165703.

21. Das A., Bestha K.K., Bongurala P., Gorige V. Correlation between size, shape and magnetic anisotropy of CoFe2O4 ferrite nanoparticles. Nanotechnology, 2020, 31, P. 335716.

22. Kumar Y., Sharma A., Ahmed Md.A., Mali S.S., Hong C.K., Shirage P.M. Morphology-controlled synthesis and enhanced energy product (BH)max of CoFe2O4 nanoparticles.

23. Fayazzadeh S., Khodaei M., Arani M., Mahdavi S.R., Nizamov T., Majouga A. Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method. Journal of Superconductivity and Novel Magnetism, 2020,3(3), P. 2227–2233.

24. Almjasheva O.V., Gusarov V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russian Journal of Applied Chemistry, 2016, 89(6), P. 851–856.

25. Dippong T., Levei E.A., Cadar O. Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials, 2021, 11, P. 1560.

26. Kuznetsova V., Almjasheva O., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Physics and Chemistry, 2009, 35(2), P. 205–209.

27. Lutterotti L., Bortolotti M., Ischia G., Lonardelli I., Wenk H.-R. Rietveld texture analysis from diffraction images. Z. Kristallogr., Suppl., 2007, 26, P. 125–130.

28. Barashok K.I., Panchuk V.V., Semenov V.G., Almjasheva O.V., Abiev R.Sh. Formation of cobalt ferrite nanopowders in an impinging-jets microreactor. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(3), P. 30–310.

29. Yuan Y., Wei S., Liang Y., Wang B., Wang Y. Effect of solvothermal reaction-time on microstructure and microwave absorption properties of cobalt ferrite. Materials, 2020, 13, P. 5331.

30. Zhao L., Zhang H., Xing Y., Song S., Yu S., Shi W., Guo X., Yang J., Lei Y., Cao F. Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem., 2008, 181, P. 245–252.

31. Lu R.E., Chang K. G., Fu B., Shen Y.J., Xu M.W., Yang S., Song X.P., Liu M., Yang Y.D. Magnetic properties of different CoFe2O4 nanostructures: nanofibers versus nanoparticles. J. Mater. Chem. C, 2014, 2, P. 8578.

32. Ansari S.M., Sinha B.B., Phase D., Sen D., Sastry P.U., Kolekar Y.D., Ramana C.V. Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Appl. Nano Mater., 2019, 2, P. 182–1843.

33. Raghvendra Yadav S., Havlica J., Masilko J., Kalina L., Hajduchov´ a M., Enev V., Wasserbauer J., Ku´ ˇritka I., Kozakova Z. Structural, cation distribution, and magnetic properties of CoFe2O4 spinel ferrite nanoparticles synthesized using a starch-assisted sol–gel auto-combustion method. Journal of Superconductivity and Novel Magnetism, 2015, 28, P. 1851–1861.


Review

For citations:


Vasil’ev B.V., Smyslov R.Yu., Kirilenko D.A., Bugrov A.N. Synthesis and magnetic properties of cobalt ferrite nanoparticles formed under hydro and solvothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):492-504. https://doi.org/10.17586/2220-8054-2021-12-4-492-504

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)