Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Properties of Prussian Blue filled membrane mini-reactor in Cs(I) adsorption processes

https://doi.org/10.17586/2220-8054-2021-12-4-512-519

Abstract

We present the results of investigation of Cs(I) ion mass-transfer from outer solution into the inner part of membrane mini-reactor (MR), which is a centimeter-sized hermetically sealed pocket made of polyethylene terephthalate track membrane and filled with Prussian Blue (PB) colloidal solution. The mean size of colloidal particles was 74 ± 20 nm (98.4%) and ξ-potential was −(33 ± 6) mV. The pore diameter of the track membrane in the experiments varied from 50 to 50000 nm. It was found that the construction and properties of PB filled MR allow one to realize an extremely high distribution coefficient of (1.50±0.05)·106 ml/g with respect to Cs(I), which is characteristic of colloid-sized PB. Adsorption is a diffusion-controlled process localized in the pores of TM, which can be fulfilled in solution without agitation.

About the Authors

A. Ioshin
Institute of Solid State Chemistry
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990.



E. Polyakov
Institute of Solid State Chemistry
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990.



I. Volkov
Institute of Solid State Chemistry
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990.



E. Denisov
Ural Federal University named after the first President of Russia B.N. Yeltzin, Physical-technical Institute
Russian Federation

28, Mira str., Ekaterinburg, 620002.



References

1. Moskvin L.N., Krivobokov V.V., Efimov A.A. Low-waste process for chemical decontamination of primary circuits of water-cooled nuclear power installations using ion-exchange methods for treatment of decontaminating solutions. Radiochemistry, 2010, 52(6), P. 584–591.

2. Kulagina T.A., Shelenkova V.V. Methods for decontamination of surfaces with nuclear pollution. Zhurnal Sibirskogo federalnogo universiteta. Ser.: Tekhnika i tekhnologii, 2017, 10(3), P. 352–363. [in Russ.]

3. Voronik N.I., Toropova V.V. Polymer formulations for “dry” decontamination of the equipment and premises of nuclear power plants. Radiochemistry, 2017, 59(2), P. 188–192.

4. Polyakov E.V. Competitive sorption as a method for environment decontamination. Priroda, 2015, 7(1199), P. 88–89. [in Russ.]

5. Rakhimova O.V. Processing and decontamination of radioactive waste of loparite concentrate chlorination. PhD thesis. Berezniki: PNITU, Perm, Genesis, 2012, 173 p [in Russ.]

6. Polyakov E.V. Physicochemistry of humate complexes as a basis of “green chemistry” in radioecology. Thesis of the 7th Russian Conference on Radiochemistry “Radiochemistry-2012”. Dimitrovgrad: OOO VDV PAK, 2012, 343 [in Russ.]

7. Voronina A.V., Semenishchev V.S., M Blinova .O., Sanin P.Ju. Methods for Decrease of Radionuclides Transfer from Soil to Agricultural Vegetation. Gupta D. (Ed.) Walther C. Radionuclides in the Environment. Springer, Cham, 2015, P. 186–204.

8. Polyakov E.V., Ioshin A.A., Volkov I.V. Competitive Adsorption as a Physicochemical Ground for Self-Sufficient Decontamination Areas from Radioactive Pollutants. [Ed.] Voronina A., Gupta D. Remediation Measures for Radioactively Contaminated Areas. Cham: Springer, 2019, 2020.

9. Polyakov E.V., Volkov I.V., Khlebnikov N.A., Tsukanov R.R. Ioshin A.A. Competitive sorption as a method for decontamination of materials. Radiokhimiya, 2015, 57(2), P. 149–153. [in Russ.]

10. Polyakov E.V., Volkov I.V., Khlebnikov N.A. Competitive sorption of cesium and other microelements onto iron(III) hexacyanoferrate(II) in the presence of humic acids. Radiochemistry, 2015, 57(2), P. 172–177.

11. Ioshin A.A., Polyakov E.V., Volkov I.V. The possibilities of removal of heavy metals and radionuclides from aqueous solutions in sorbent packaged membrane reactor. “Solid State Chemistry and Functional Materials-2016”. All-Russian Conference, Ekaterinburg: UrO RAN, 2016, P. 144–145. [in Russ.]

12. Polyakov E.V., Ioshin A.A., Volkov I.V. Method for removal of toxic metals and radionuclides from aqueous solutions. ISSC UB RAS. Priority No. 2016114919 RF, Bull. 30, 3p [in Russ.]

13. Remez, V.P. ECSORB 2016. ECSORB. [In Internet] Mediasite, 10 08 2016. [Cited: 31.08.2019] http://www.eksorb.com/about/history/

14. Gerasimov A.A. Dubna cluster – Areas – Track membranes. Dubna cluster. [In Internet], 2013, [Cited: 14.08.2019] http://dubna-cluster.ru/areas/track-membranes/. [in Russ.]

15. Adak S., L. L. Daemen, Hartl M., Williams D., Summerhill J., Nakotteet H. Thermal expansion in 3d-metal prussian blue analogs – A survey study. Journal of Solid State Chemistry, 2011, 184(11), P. 2854–2861.

16. Polyakov E.V., Volkov I.V., Surikov V.T., Perelyaeva L.A., Shveikin G.P. Dissolution of monazite in humic solutions. Radiochemistry, 2010, 52(4), P. 429–434.

17. Betenekov N.D., Denisov E.I., Sharygin L.M. Influence of molybdenum speciation on its recovery with hydroxide sorbents. Radiochemistry, 2016, 58(1), P. 63–71.

18. Acherkan N.S. Machinery handbook. Moscow: MASHGIZ, 1955–1961. V. 2, P. 616–618. [in Russ.]

19. Nosov A.V., Krylov A.L., Kiselev V.P., Kazakov S.V. Modeling of migration of radioactive substances in surface water. [Ed.] Arutyunyan R.V. Moscow: Nuclear Safety Institute (IBRAE) RAS. Nauka, 2010, p. 253.

20. Robinson R.A., Stoks R.H. Electrolyte solutions. London, Butterworths Scientific Publications, 1959, p. 645


Review

For citations:


Ioshin A., Polyakov E., Volkov I., Denisov E. Properties of Prussian Blue filled membrane mini-reactor in Cs(I) adsorption processes. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):512-519. https://doi.org/10.17586/2220-8054-2021-12-4-512-519

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)