Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Tuning of interfacial interactions in poly(isoprene) ferroelastomer by surface modification of embedded metallic iron nanoparticles

https://doi.org/10.17586/2220-8054-2021-12-4-520-527

Abstract

Zero-valent metallic iron nanoparticles (NPs) with modified surface were embedded in poly(isoprene) (PI) and the enthalpy of interfacial adhesion in resulted ferroelastomers was evaluated. Iron NPs were synthesized by the method of electrical explosion of wire (EEW) in inert gas. Modification of their surface was performed by the in situ liquid treatment of the active condensed NPs in the EEW installation. The enthalpy of mixing of poly(isoprene) with Fe NPs was determined using thermochemical cycle based on the isothermal calorimetry measurement of the enthalpy of dissolution of PI/Fe composites in chloroform at 25C. Using these values the enthalpy of adhesion of PI to the surface of modified Fe NPs was evaluated using Langmuir-type isotherm. It was shown that the enthalpy of adhesion strongly depends on the properties of the surface of Fe NPs and its modification. It was the lowest in the case of oxidized Fe NPs and the highest for Fe NPs which surface was modified by pre-deposited polymeric shells.

About the Authors

A. P. Safronov
Ural Federal University, Institute of Natural Sciences and Mathematics; Institute of Electrophysics UB RAS
Russian Federation

19, Mira Str., Yekaterinburg,  620002;

106, Amundsen Str., Yekaterinburg, 620016.



T. V. Terziyan
Ural Federal University, Institute of Natural Sciences and Mathematics
Russian Federation

19, Mira Str., Yekaterinburg, 620002.



A. V. Petrov
Uralplast LLC
Russian Federation

7, Schorsa Str., Yekaterinburg, 620142.



I. V. Beketov
Ural Federal University, Institute of Natural Sciences and Mathematics; Institute of Electrophysics UB RAS
Russian Federation

19, Mira Str., Yekaterinburg,  620002;

106, Amundsen Str., Yekaterinburg, 620016.



References

1. Li L., Hu J., Shi X., Fan M., Luo J., Wei X. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation. Environ Sci Pollut Res, 2016, 23, P. 17880–17900.

2. Yang T.-I., Brown R.N.C., Kempel L. C., Kofinas P. Magnetodielectric properties of polymer-Fe3O4 nanocomposites. J Magn Magn Mater, 2008, 320(31), P. 2714–2720.

3. Jamal E.M.A., Joy P.A., Kurian P., Anantharaman M.R. Synthesis of nickel rubber nanocomposites and evaluation of their dielectric properties, Mater Sci Eng B-Adv, 2009, 156(13), P. 24–31.

4. Kong I., Ahmad S. H., Abdullah M. H., Hui D., Yusoff A.N., Puryanti D. Magnetic and microwave absorbing properties of magnetite thermoplastic natural rubber nanocomposites. J Magn Magn Mater, 2010, 322(21), P. 3401–3409.

5. Stepanov G.V., Chertovich A.V., Kramarenko E.Yu. Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler. J Magn Magn Mater, 2012, 324(21), P. 3448–3451.

6. Kango S., Kalia S., Celli A., Njuguna J., Habibi Y., Kumar R. Surface modification of inorganic nanoparticles for development of organic– inorganic nanocomposites – a review. Progress Polym Sci, 2013, 38, P. 1232–1261.

7. Yuan W., Yuan J., Zhou L., Wu S., Hong X. Fe3O4@poly(2-hydroxyethyl methacrylate)-graft-poly(3-caprolactone) magnetic nanoparticles with branched brush polymeric shell. Polymer, 2010, 51, P. 2540–2547.

8. Pich A., Bhattacharya S., Ghosh A., Adler H.-J.P. Composite magnetic particles: 2. Encapsulation of iron oxide by surfactant-free emulsion polymerization. Polymer, 2005, 46, P. 4596–4603.

9. Campanella A., Di Z., Luchini A., Paduano L., Klapper A., Herlitschke M., Petracic O., Appavou M.S., Muller-Buschbaum P., Frielinghaus¨ H., Richter D. Nanocomposites composed of HEUR polymer and magnetite iron oxide nanoparticles: Structure and magnetic response of the hydrogel and dried state. Polymer, 2015, 60, P. 176–185.

10. Mocz´o J., Puk´anszky B. Polymer micro and nanocomposites: Structure, interaction, properties.´ J Ind Eng Chem, 2008, 14, P. 535–563.

11. Liu D., Pourrahimi A.M., Olsson R.T., Hedenqvist M.S., Gedde U.W. Influence of nanoparticle surface treatment on particle dispersion and interfacial adhesion in low-density polyethylene/aluminium oxide nanocomposites. Eur Polym J, 2015, 66, P. 67–77.

12. Chou F.-Y., Shih C.-M., Tsai M.-C., Chiu W.-Y., Lue S.J. Functional acrylic acid as stabilizer for synthesis of smart hydrogel particles containing a magnetic Fe3O4 core. Polymer, 2012, 53, P. 2839–2846.

13. Gelbrich T., Marten G.U., Schmidt A.M. Reversible thermoflocculation of magnetic core-shell particles induced by remote magnetic heating. Polymer, 2010, 51, P. 2818–2824.

14. Chen J., Du K., Chen X., Li Y., Huang J., Wu Y., Yang C., Xia X. Influence of surface microstructure on bonding strength of modified polypropylene/aluminum alloy direct adhesion. Appl Surf Sci, 2019, 489, P. 392–402.

15. Barroso-Bujans F., Serna R., et al. Grafting of poly(acrylic acid) onto an aluminum surface. Langmuir, 2009, 25(16), P. 9094–9100.

16. Beketov I.V., Safronov A.P., Bagazeev A.V., Larranaga A., Kurlyandskaya G.V., Medvedev A.I. In situ modification of Fe and Ni magnetic˜ nanopowders produced by the electrical explosion of wire. Journal of Alloys and Compounds, 2014, 586, P. S483–S488.

17. Safronov A.P., Kurlyandskaya G.V., Chlenova A.A., Kuznetsov M.V., Bazhin D.N., Beketov I.V., Sanchez-Ilarduya M.B., Martinez-Amesti A. Carbon deposition from aromatic solvents onto active intact 3d metal surface at ambient conditions. Langmuir, 2014, 30, P. 3243–3253.

18. Kotov Yu.A. Electric explosion of wires as a method for preparation of nanopowders. Journal of Nanoparticle Research, 2003, 5, P. 539–550.

19. Kurlyandskaya G.V., Bhagat S.M., Safronov A.P., Beketov I.V., Larranaga A. Spherical magnetic nanoparticles fabricated by electric explosion of wire. AIP Advances, 2011, 1, P. 042122.

20. Petrov A.V., Safronov A.P., Terziyan T.V., Beketov I.V. Effect of the nature of a polymer matrix on the enthalpy of adhesion interactions in composites filled with nickel nanoparticles. Polym Sci Ser A, 2012, 54(11), P. 840–848.

21. Terziyan T.V., Safronov A.P., Petrov A.V., Panteleeva M.V., Beketov I.V. Thermodynamics of interfacial interactions in composites based on nanodispersed NiO and methacrylic acid derivatives, Polym Sci Ser A, 2014, 56(1), P. 63–71.

22. Terziyan T.V., Safronov A.P., Zalyaeva E.R., Beketov I.V., Lakiza N.V. Thermochemical analysis of the interaction between interfaces in composites containing nanodispersed powders of Al and Al2O3. Russian Journal of Physical Chemistry A, 2020, 94(12), P. 2508–2513.

23. Safronov A.P., Bagazeev A.V., Demina T.M., Petrov A.V., Beketov I.V. Active surface modification for iron nanopowders produced by wire electrical explosion. Nanotechnologies in Russia, 2012, 7, P. 5–6.

24. Hiemenz P.C., Rajagopalan R., Principles of Colloid and Surface Chemistry. Marcel Dekker, New York, 1997, 651 p.

25. Takahashi A., Kawaguchi M. The structure of macromolecules adsorbed on interfaces. Adv Polym Sci, 1982, 46, P. 1–65.


Review

For citations:


Safronov A.P., Terziyan T.V., Petrov A.V., Beketov I.V. Tuning of interfacial interactions in poly(isoprene) ferroelastomer by surface modification of embedded metallic iron nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(4):520-527. https://doi.org/10.17586/2220-8054-2021-12-4-520-527

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)