Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Bound states for Laplacian perturbed by varying potential supportedby line in R3

https://doi.org/10.17586/2220-8054-2021-12-5-549-552

Abstract

We investigate a system with attracting δ-potential located along a straight line in 3D. It has constant intensity, except for a local region. We prove the existence of discrete spectrum and construct an upper bound on the number of bound states, using Birman-Schwinger method.

About the Author

A. S. Bagmutov
ITMO University
Russian Federation

Kronverkskiy, 49, Saint Petersburg, 197101



References

1. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics, Springer, Heidelberg, 1988.

2. Brasche J., Exner P., Kuperin Yu.A., Seba P. Schr¨odinger operator with singular interactions. J. Math. Anal. Appl., 1994, 184, P. 112–139.

3. Posilicano A. A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal., 2001, 183, P. 109–147.

4. Shondin Yu. On the semiboundedness of delta-perturbations of the Laplacian on curves with angular points. Theor. Math. Phys., 1995, 105, P. 1189–1200.

5. Behrndt J., Langer M. Boundary value problems for elliptic partial differentialoperators on bounded domains. J. Funct. Anal., 2007, 243, P. 536–565.

6. Behrndt J., Frank R.L., Kuhn Ch., Lotoreichik V., Rohleder J. Spectral theory for Schroedinger operators with δ-interactions supported on curves in R3. Ann. H. Poincar’e, 2017, 18, P. 1305–1347.

7. Exner P., Ichinose T. Geometrically induced spectrum in curved leaky wires. J. Phys., 2001, A34, P. 1439–1450.

8. Exner P., Kondej S. Gap asymptotics in a weakly bent leaky quantum wire. J. Phys., 2015, A48, P. 495301.

9. Exner P., Yoshitomi K. Asymptotics of eigenvalues of the Schroedinger operator with a strong delta-interaction on a loop. J. Geom. Phys., 2002, 41, P. 344–358.

10. Exner P., Kondej S. Curvature-induced bound states for a delta interaction supported by a curve in R3. Ann. H. Poincare, 2002, 3, P. 967–981.

11. Exner P., Kondej S. Hiatus perturbation for a singular Schr¨odinger operator with an interaction supported by a curve in R3. J. Math. Phys., 2008, 49, P. 032111.

12. Exner P., Kondej S. Scattering by local deformations of a straight leaky wire. J. Phys., 2005, A38, P. 4865–4874.

13. Exner P., Jex M. Spectral asymptotics of a strong δ0 interaction on a planar loop. J. Phys., 2013, A46, P. 345201.

14. Exner P., Tater M. Spectra of soft ring graphs. Waves Random Media, 2003, 14, P. S47–S60.

15. Behrndt J., Langer M., Lotoreichik V. Schroedinger operators with δ and δ0-potentials supported on hypersurfaces. Ann. Henri Poincar’e, 2013, 14, P. 385–423.

16. Exner P. Leaky quantum graphs: a review, Analysis on Graphs and its Applications. Selected papers based on the Isaac Newton Institute for Mathematical Sciences programme, Cambridge, UK, 2007, Proc. Symp. Pure Math., 2008, 77, P. 523–564.

17. Kurylev Ya. Boundary conditions on curves for the three-dimensional Laplace operator. Journal of Soviet Mathematics, 1983, 22(1), P. 1072– 1082.

18. Blagovescenskii A.S.,Lavrent’ev K.K. A three-dimensional Laplace operator with a boundary condition on the real line (in Russian). Vestn.Leningr.Univ., Math. Mekh. Astron., 1977, 1, P. 9–15.

19. Exner P., Kondej S. Strong coupling asymptotics for Schrodinger operators with an interaction supported by an open arc in three dimensions. Rep. Math. Phys., 2016, 77, P. 1–17.

20. Eremin D.A., Ivanov D.A., Popov I.Yu. Regular Potential Approximation for delta-Perturbation Supported by Curve of the Laplace-Beltrami Operator on the Sphere. Zeitschrift fur Analysis und Ihre Anwendungen, 2012, 31(2), P. 125–137.

21. Reed M., Simon B. Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York, 1978.

22. Pavlov B.S., Popov I.Y. Model of diffraction on an infinitely-narrow slit and the theory of extensions. Vestnik Leningrad. Univ. Ser. Mat., Mekh., Astr., 1983, 4, P. 36–44.

23. Popov I.Yu. The extension theory and localization of resonances for the domain of trap type. Matematicheskii sbornik, 1990, 181(10), P. 1366– 1390. English: Mathematics of the USSR-Sbornik, 1992, 71(1), P. 209–234.

24. Popov I.Y. The resonator with narrow slit and the model based on the operator extensions theory. J. Math. Phys., 1992, 33(11), P. 3794–3801.

25. Popov I.Yu. Helmholtz resonator and the operator extension theory in a space with an indefinite metrics. Matematicheskii sbornik, 1992, 183(3), P. 2–38. English translation in Russian Acad. Sci. Sb. Math., 1993, 75(2), P. 285–315.


Review

For citations:


Bagmutov A.S. Bound states for Laplacian perturbed by varying potential supportedby line in R3. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(5):549-552. https://doi.org/10.17586/2220-8054-2021-12-5-549-552

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)