Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Оптический датчик на базе поверхностного плазмонного резонанса для обнаружения COVID-19

https://doi.org/10.17586/2220-8054-2021-12-5-575-582

Аннотация

Передача SARS-CoV-2, нового коронирусного вируса тяжелого острого респираторного синдрома, вызвала всемирную пандемию коронавирусной болезни (Covid-19). Преодоление этой пандемии требует выявления пациентов, чтобы избежать дальнейшего распространения болезни. Решающее значение имеют чувствительные и экономичные методы обнаружения вируса COVID-19 в режиме реального времени. Одним из таких средств для достижения этого являются оптические датчики, особенно с использованием поверхностного плазмонного резонанса из-за его преимуществ, таких как высокая чувствительность и отличные пределы обнаружения. В этой статье мы предлагаем датчик для обнаружения COVID-19, основанный на простой конфигурации Кречмана со слоями золота и ДНК, связанной с тиолами, для слоя лиганда. Угловой проверка была использована для получения чувствительности этой структуры с использованием численного анализа Matlab. Работа датчика исследовалась с двумя типами призм, SF10 и SF11, при изменении толщины слоя золота в пределах 45-60 нм. Затем эта информация использовалась для определения того, какая комбинация призмы и толщины золота идеально подходит для обнаружения COVID-19 с использованием ДНК, связанной тиолом. Датчик слоя ДНК, связанный тиолом, показал самую высокую чувствительность 137 градусов/RIU, когда использовалась призма SF10 со слоем золота 50–60 нм и слоем ДНК, связанной тиолом.

Об авторах

H. A. Zain
Photonics Engineering Laboratory, Department of Electrical Engineering, University of Malaya
Малайзия


M. Batumalay
Faculty of IT, INTI International University
Малайзия


H. R. A. Rahim
Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka
Малайзия


Z. Harith
Faculty of Engineering and QS, INTI International University
Малайзия


M. Yasin
Department of Physics, Faculty of Science and Technology, Airlangga University
Индонезия


S. W. Harun
Photonics Engineering Laboratory, Department of Electrical Engineering, University of Malaya
Малайзия


Список литературы

1. MenniC., Valdes A.M., et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine, 2020, 26 (7), P. 1037–1040.

2. Van Doremalen N., Bushmaker T., et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 2020, 382 (16), P. 1564–1567.

3. Xie X., Zhong Z., et al. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology, 2020, 296 (2), E41–E45.

4. Li X., Zeng W., et al. CT imaging changes of corona virus disease 2019(COVID-19): a multi-center study in Southwest China. Journal of Translational Medicine, 2020, 18 (1), 154.

5. Fang Y., Zhang H., et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296 (2), E115–E117.

6. Nguyen T., Duong Bang D., Wolff A. 2019 Novel Coronavirus Disease (COVID-19): Paving the Road for Rapid Detection and Point-of-Care Diagnostics. Micromachines (Basel), 2020, 11 (3), 306.

7. Kaur M., Tiwari S., Jain R. Protein based biomarkers for non-invasive Covid-19 detection. Sens Biosensing Res, 2020, 29, 100362.

8. Jing J.-Y., Wang Q., Zhao W.-M., Wang B.-T. Long-range surface plasmon resonance and its sensing applications: A review. Optics and Lasers in Engineering, 2019, 112, P. 103–118.

9. Lukose J., Chidangil S., George S.D. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosensors and Bioelectronics, 2021, 178, 113004.

10. Amendola V., Pilot R., et al. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter, 2017, 29 (20), 203002.

11. Drobysh M., Ramanaviciene A., Viter R., Ramanavicius A. Affinity Sensors for the Diagnosis of COVID-19. Micromachines (Basel), 2021, 12 (4), 390.

12. Abid S.A., Ahmed Muneer A., et al. Biosensors as a future diagnostic approach for COVID-19. Life Sciences, 2021, 273, 119117.

13. Prabowo B.A., Purwidyantri A., Liu K.C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors (Basel), 2018, 8 (3), 80.

14. Gupta G., Kondoh J. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2007, 122 (2), P. 381–388.

15. Sharma A.K., Jha R., Gupta B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sensors Journal, 2007, 7 (8), P. 1118–1129.

16. Roh S., Chung T., Lee B. Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors (Basel), 2011, 11 (2), P. 1565–1588.

17. Patil P.O., Pandey G.R., et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosensors and Bioelectronics, 2019, 139, 111324.

18. Omar N.A.S., Fen Y.W., et al. Quantitative and selective surface plasmon resonance response based on a reduced graphene oxide–polyamidoamine nanocomposite for detection of dengue virus e-proteins. J. Nanomaterials, 2020, 10 (3), 569.

19. Jahanshahi P., Zalnezhad E., Sekaran S.D., Adikan F.R. Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor. Scientific Reports, 2014, 4, 3851.

20. Bai H., Wang R., et al. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (Basel), 2012, 12 (9), P. 12506–12518.

21. Wang S., Shan X., et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proceedings of the National Academy of Sciences of the USA, 2010, 107 (37), P. 16028–16032.

22. Uzun L., Say R., Unal S., Denizli A. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosensors and Bioelectronics, 2009, 24 (9), P. 2878–2884.

23. Tam Y.J., Zeenathul N.A., et al. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnology and Applied Biochemistry, 2017, 64 (5), P. 735–744.

24. Zhao G., He L., et al. A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV. Journal of Virology, 2018, 92 (18), e00837–18.

25. Ahn D.G., Jeon I.J., et al. RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein. Analyst, 2009, 134 (9), P. 1896– 1901.

26. Chandra S., Bharadwaj R., Mukherji S. Label free ultrasensitive optical sensor decorated with polyaniline nanofibers: Characterization and immunosensing application. Sensors and Actuators B: Chemical, 2017, 240, P. 443–450.

27. Peng T., Liu X., et al. Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. Applied Physics Letters, 2020, 117 (12), 120601.

28. Huang L., Ding L., et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosensors and Bioelectronics, 2021, 171, 112685.

29. Bong J.-H., Kim T.-H., et al. Pig Sera-derived Anti-SARS-CoV-2 Antibodies in Surface Plasmon Resonance Biosensors. BioChip Journal, 2020, 14 (4), P. 358–368.

30. Schasfoort R.B.M.,van Weperen J., et al. High throughput surface plasmon resonance imaging method for clinical detection of presence and strength of binding of IgM, IgG and IgA antibodies against SARS-CoV-2 during CoViD-19 infection. Methods X, 2021, 8, 101432.

31. Qiu G., Gai Z., et al. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS nano, 2020, 14 (5), P. 5268–5277.

32. Uddin S.M.A., Chowdhury S.S., Kabir E. Numerical Analysis of a Highly Sensitive Surface Plasmon Resonance Sensor for SARS-CoV-2 Detection. Plasmonics, 2021, P. 1–13.

33. Das C.M., Guo Y., et al. Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID-19 SARS-CoV-2 Spike Protein. Advanced theory and simulations, 2020, 3 (11), 2000185.

34. Yamamoto M. Surface plasmon resonance (SPR) theory: tutorial. Review of Polarography, 2002, 48 (3), P. 209–237.

35. Rahman M.S., Anower M.S., et al. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 2017, 396, P. 36–43.

36. Saifur Rahman M., Rikta K.A., Bashar L.B., Anower M.S. Numerical analysis of graphene coated surface plasmon resonance biosensors for biomedical applications. Optik, 2018, 156, P. 384–390.

37. Brahmachari K., Ray M. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Frontiers of Optoelectronics, 2013, 6 (2), P. 185–193.

38. Sharma N.K., Yadav S., Sajal V. Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide. Optics Communications, 2014, 318, P. 74–78.

39. Peterlinz K.A., Georgiadis R.M., Herne T.M., Tarlov M.J. Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy. Journal of the American Chemical Society, 1997, 119 (14), P. 3401–3402.

40. SCHOTT, Optical Glass Collection N-SF10, in 728284.428, ed, 2014, URL: https://shop.schott.com/advanced_optics/en/Optical-Glass/NSF10/c/optical-glass/glass-N-SF10.

41. SCHOTT, Optical Glass Collection N-SF11, in 785257.322, ed, 2014, https://shop.schott.com/advanced_optics/en/N-SF11/c/glass-N-SF11.


Рецензия

Для цитирования:


Zain H.A., Batumalay M., Rahim H., Harith Z., Yasin M., Harun S.W. Оптический датчик на базе поверхностного плазмонного резонанса для обнаружения COVID-19. Наносистемы: физика, химия, математика. 2021;12(5):575-582. https://doi.org/10.17586/2220-8054-2021-12-5-575-582

For citation:


Zain H.A., Batumalay M., Rahim H.A., Harith Z., Yasin M., Harun S.W. Surface plasmon resonance optical sensor for COVID-19 detection. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(5):575-582. https://doi.org/10.17586/2220-8054-2021-12-5-575-582

Просмотров: 145


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)