Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Personalized energy systems based on nanostructured materials

https://doi.org/10.17586/2220-8054-2021-12-3-368-403

Abstract

In this paper, the achievements, problems and prospects of creating personalized energy systems based on nanostructured materials are analysed. Various concepts of developing methods and ways of personalized energy provision for autonomous human survival in remote natural habitat, emergency situations of natural disasters and technogenic catastrophes when centralized power supply is unavailable or in an effort to reduce the economic and environmental costs of remote energy production and transportation are also considered. The possibilities and limitations of using traditional and renewable alternative energy sources, processes and devices for extracting, storing and converting their energy into the necessary consumer forms due to fundamental physical laws are discussed as well. The article covers the new nanostructured materials with special functional properties for personalized energy systems development. The mechanisms for formation of the required nanostructures in synthesized materials, especially those with a high content of fractal interfacial formations, are considered as well as methods for studying their structural and phase characteristics that determine the achievability of the specified parameters of model converters and energy storage devices.

About the Authors

A. N. Kovalenko
Ioffe Institute
Russian Federation

A.N. Kovalenko

26 Politekhnicheskaya, St. Petersburg 194021



E. A. Tugova
Ioffe Institute
Russian Federation

E.A. Tugova

26 Politekhnicheskaya, St. Petersburg 194021



V. I. Popkov
Ioffe Institute
Russian Federation

V. I. Popkov

26 Politekhnicheskaya, St. Petersburg 194021



O. N. Karpov
Ioffe Institute
Russian Federation

O. N. Karpov

26 Politekhnicheskaya, St. Petersburg 194021



A. I. Klyndyuk
Belarusian State Technological University
Belarus

A. I. Klyndyuk

13a Sverdlova, Minsk, 220006



References

1. Fortov V.E., Popel O.S. Energy in the modern world. Intellect, Dolgoprudnyy, 2011, 168 p. (In Russian).

2. Bansal R.C. Dr. Optimization methods for electric power systems: An overview. International Journal of Emerging Electric Power Systems, 2005, 2 (1), 1021.

3. Trukhny A.D., Makarov A.A., Klimenko V.V. Fundamentals of Modern Energy (in two parts). MPEI Publishing House, Moscow, 2002, 368 p. (In Russian).

4. Danilevich Ya.B., Kovalenko A.N. Energy and its place in the modern world. Bulletin of the Russian Academy of Sciences, Energetika, 2004, 6, P. 20–28 (In Russian).

5. Alkhasov A.B. Renewable energy. Fizmatlit, Moscow, 2010, 255 p. (In Russian).

6. Twidell J., Weir T. Renewable energy resources. Taylor & Francis, London and New-York, 2006, 602 p.

7. Popel’ O.S., Frid S.E., et al. Independent hydrogen power installations with renewable sources of energy. Thermal Engineering, 2006, 53, P. 208–216.

8. Pozdnyakov B.S., Koptelov E.A. Thermoelectric power engineering. Atomizdat, Moscow, 1974, 264 p. (In Russian).

9. Danilevich Ya.B., Kovalenko A.N., Shilin V.L. Autonomous systems of electric and heat supply with buffer energy storage. Proceedings of the RAS. Energetika, 2002, 1, P. 69–78 (in Russian).

10. Danilevich Ya.B., Kovalenko A.N. Heat pumps in small energy systems. Proceedings of the RAS. Energetika, 2005, 1, P. 63–69 (in Russian).

11. Dobarina I.A., Zhigarev O.L. Fundamentals of life safety and first aid. In: Survival in an autonomous existence. Ed. R.I. Aizman, S.G. Krivoshchekova, I.V. Omelchenko. Siberian University Press, 2004 (in Russian).

12. Volovich V.G. Man in extreme environmental conditions. Mysl’, Moscow, 1983, 197 p. (in Russian).

13. Davy N., Sezen-Edmonds M., et al. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat Energy, 2017, 2, 17104.

14. Makarov A.A., Fortov V.E. World energy development trends and energy strategy of Russia. Herald of the RAS, 2004, 74 (3), P. 195–208 (in Russian).

15. Belyaev L. S., Lagerev A. V., Posekalin V. V. Power Engineering in the 21st Century: Conditions of Evolution, Technologies, Prospects. Ed. Voropai N.I., Novosibirsk, Nauka, 2004, 386 p. (in Russian).

16. Bushuev V.V. Prospects for global energy development until 2050. 2010, URL: http://portal-energo.ru/articles/details/id/292.

17. Olkhovsky G.G. Global Energy Issues. Global energy problems. Power Technology and Engineering, 2005, 1, P. 4–10 (in Russian).

18. Stennikov V., Voropai N., Barakhtenko E., Sokolov D. Digitalization of integrated energy systems. Energy Safety and Energy Economy, 2020, 4 (94), P. 5–10.

19. Ushakov V.Ya. The main problems of energy and possible solutions. Bulletin of the Tomsk Polytechnic University, 2011, 319 (4), P. 5–13 (in Russain).

20. IEA. Energy Technology Perspectives 2008: Scenarios and Strategies to 2050. OECD Publishing, Paris, 2008, 648 p. URL: https://doi.org/10.1787/9789264041431-en.

21. Defay R., Prigogine I. Tension superficielle et adsorption. Editions Desoer, Liege, 1951, 295 p.

22. Kovalenko A.N., Tugova E.A. Thermodynamics and kinetics of non-autonomous phases formation in nanostructured materials with variable functional properties. Nanosystems: Phys. Chem. Math., 2018, 9 (5), P. 641–662.

23. Krasnenko T.I., Rotermel M.V., Samigullina R.F. Stabilizing the associated non-autonomous phase upon thermal expansion of Zn2V2O7. Russ. J. Inorg. Chem., 2017, 62 (4), P. 413–417.

24. Samarsky A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Modes with exacerbation in problems for quasilinear parabolic equations. Nauka, Moscow, 1987, 480 p. (in Russian).

25. Akhromeeva T.S., Kurdyumov S.P., Malinetskiy G.G., Samarsky A.A. Unsteady structures and diffusion chaos. Nauka, Moscow, 1992, 544 p (in Russian).

26. Grinchenko V.T., Matsypura V.T., Snarsky A.A. Introduction to nonlinear dynamics. Chaos and Fractals. LCI, 2007, 264 p. (in Russian).

27. Kurdyumov S.P. New in synergetics: A look into the third millennium. Informatics: unlimited possibilities and possible limitations. Nauka, Moscow, 2002, 480 p. (in Russian).

28. Snyder W.S., Cook M. J., et al. Report of the task group on reference man. ICRP Publication 23. Pergamon Press, Oxford. 1975, 500 p.

29. Fokin V.F., Ponomareva N.V. Neuronergetics and brain physiology. Antidor, Moscow, 2003, 288 p. (in Russian).

30. Shaikh F.K., Zeadally S. Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 2016, 55, P. 1041–1054.

31. Yildiz F. Potential ambient energy harvesting sources and techniques. Journal of Technology Studies, 2009, 35 (1), P. 40–48.

32. Jaffe P., McSpadden J. Energy conversion and transmission modules for space solar power. Proceedings of the IEEE, 2013, 101 (6), P. 1424– 1437.

33. Siddique A.R., Rabari R., Mahmud Sh. et al. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique. Energy, 2016, 115 (1), P. 1081–1091.

34. Leonov V. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensors Journal, 2013, 13 (6), P. 2284–2291.

35. Turkmen A.C., Celik C. Energy harvesting with the piezoelectric material integrated shoe. Energy, 2018, 150, P. 556–564.

36. Kapitsa P.L. Energy and Physics. Bulletin of the USSR Academy of Sciences, 1976, 46 (1), P. 34–43 (in Russian).

37. Bekzhanova N.V., Sereda S.B., Sidorenko N.A. Nobel lectures in Russian translations, 1901–1902: Biobibliographic index. Academy of Sciences Library, Saint-Petersburg, 2003, 166 p. (in Russian)

38. Ugarov G.G., Soshinov A.G., Vdovina O.V. Energy converters. Volgograd state technical university, Volgograd, 2010, 95 p. (in Russian)

39. Alekseev G.N. Forecasting the development of power plants energy conversion. Nauka, Moscow, 1966, 190 p. (in Russian)

40. Almyasheva O.V., Gusarov V.V., et al. A new type of super-energy storage based on non-carbon nanomaterials. Proceedings of the Research Center for Photonics and Optoinformatics, 2010, 1 (2), P. 187–204. (in Russian)

41. Rychagov A.Y., Vol’fkovich Y.M., et al. Perspective electrode materials for supercapacitors. Electrochemical Energetics, 2012, 11 (4), P. 167–180.

42. Medvedeva A.E., Pechen L.S., et al. Synthesis and electrochemical properties of lithium-ion battery cathode materials based on LiFePO4– LiMn2O4 and LiFePO4–LiNi0.82Co0.18O2 composites. Russ. J. Inorg. Chem., 2019, 64 (7), P. 829–840.

43. Basistaya A.O., Karushev M.P., et al. A new conducting polymer for lithium-ion batteries. Tech. Phys. Lett., 2020, 46 (1), P. 77–79.

44. Polozhentseva Y.A., Karushev M.P., et al. A lithium-ion supercapacitor with a positive electrode based on a carbon material modified by polymeric complexes of nickel with Schiff bases. Tech. Phys. Lett., 2020, 46 (2), P. 196–199.

45. Frackowiak E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys., 2007, 9, P. 1774–1785.

46. Inagaki M., Konno H., Tanaike O. Carbon materials for electrochemical capacitors. J. Power Sources, 2010, 195, P. 7880–7903.

47. Emerson C. 100 Deadly Skills: The seal operative’s guide to eluding pursuers, evading capture, and surviving any dangerous situation. Atria Books, New York, 2020, 272 p.

48. Fokin B.S. Optimum values of energy converter efficiency. J. Eng. Phys. Thermophy, 2009, 82 (3), P. 598—603.

49. Tribus M. Thermostatics and thermodynamics: An introduction to energy, information and states of matter, with engineering applications. D. Van Nostrand Company Inc., 1961, 649 p.

50. Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability and fluctuation. Wiley-Interscience, New York, 1971, 305 p.

51. Nicolis G., Prigogine I. Exploring complexity, an introduction. W.H. Freedman and Co., New York, 1989, 328 p.

52. Khvesyuk V.I., Ostanko D.A., et al. Maximum efficiency of thermoelectric heat conversion in high-temperature power devices. Nauka i Obrazovanie, 2016, 3, P. 81–105.

53. Kovalenko A.N. Study of the characteristics of powerful power plants based on the methods of nonequilibrium thermodynamics. Proceedings of magnetovitational transport systems and technologies. Saint-Petersburg, October 29–31, Publishing House PGUPS, 2013, P. 38–42 (In Russian).

54. Caplan S.R., Essig A. Bioenergetics and linear nonequilibrium thermodynamics. Harvard University Press, Cambridge, 1983, 435 p.

55. Zotin A.I. The thermodynamic basis of body reactions to external and internal factors. Nauka, Moscow, 1988, 272 p. (in Russian).

56. Danilevich Ya.B., Kovalenko A.N., Nosyrev S.P. Irregularity of entropy processes in the body as an indicator of its functional stability. Doklady Biological Science, 2009, 429 (1), P. 490–493.

57. Slovokhotov Y.L. Phase transitions associated with economy and demography. Computer Research and Modeling, 2010, 2 (2), P. 209–218.

58. Delogu F. Thermodynamics on the nanoscale. J. Phys. Chem. B, 2005, 109, P. 21938–21941.

59. Hill T.L. Thermodynamics of small systems. Dover Publication, New-York, 2013, 416 p.

60. Hill T.L. A Different approach to nanothermodynamics. Nano Letters, 2001, 1 (5), P. 273–275.

61. Babuk V.A., Zelikov A.D., Salimullin R.M. Nanothermodynamics as a tool to describe small objects of nature. Tech. Phys., 2013, 58, P. 151–157.

62. Aranson I.S., Gaponov-Grekhov A.V., et al. Lattice models in the nonlinear dynamics of nonequilibrium media. Preprint No. 163. IAP Academy of Sciences of the USSR, Gorky, 1987, 24 p. (In Russian).

63. Rekhviashvili S.Sh., Kishtikova E.V., Rozenberg B.A. Model of a nanoparticle in the theory of inhomogeneous medium. Technical physics, 2009, 79 (12), P. 1731–1735.

64. Rusanov A. Nanothermodynamics. Russian Journal of Physical Chemistry, 2003, 77 (10), P. 1558–1563.

65. Rusanov A.I. Nanothermodynamics: chemical approach. Russian Chemical Journal, 2006, 50 (2), P. 145–151. (In Russian)

66. Rusanov A.I. Surface thermodynamics revisited. Surface Science Reports, 2005, 37 (25), P. 111–239.

67. Rowlinson J.S. Statistical thermodynamics of small systems and interfaces. Pure and Applied Chemistry, 1987, 59 (1), P. 15–24.

68. Shcherbakov L.M. On the statistical assessment of the excess energy of small objects in the thermodynamics of microheterogeneous systems. Reports of the USSR Academy of Sciences, 1966, 168 (2), P. 388–391. (In Russian)

69. Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 1988, 52(1–2), P. 479–487.

70. Sevick E.M., Prabhakar R., Williams S.R., Searles D.J. Fluctuation Theorems. Review of Physical Chemistry, 2008, 59, P. 603–633.

71. Rubi J.M. The non-equilibrium thermodynamics approach to the dynamics of mesoscopic systems. Journal of Non-Equilibrium Thermodynamics, 2004, 29, P. 315–325.

72. Gemmer J., Michel M., Mahler G. Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. Springer-Verlag Berlin Heidelberg, Berlin, 2009, 346 p.

73. Jaycock M.J., Parfitt G.D. Chemistry of Interfaces. Ellis Horwood Limited, 1981, 279 p.

74. Gyarmati I. Non-equilibrium Thermodynamics. Field Theory and Variational Principles. Springer-Verlag Berlin Heidelberg, Berlin, 1970, 184 p.

75. Kondepudi D., Prigogine I. Modern Thermodynamics. From heat engines to dissipative structures. Wiley, UK, 1998, 506 p.

76. Onsager L., Hemmer P.C., Holden H. Kjelstrap S. The collected works of Lars Onsager: with commentary. World scientific, Singapore, 1996, 1086 p.

77. Haase R. Thermodynamics of irreversible processes. New-York: Dover, 1990, 513 p.

78. Petrov N., Brankov I. Modern problems of thermodynamics. Translation from the Bulgarians. Mir, Moscow, 1989, 385 p. (in Russian)

79. Etkin V.A. On the origin of Onsager reciprocity relations. Proceedings of the Siberian Branch of the Academy of Sciences of the USSR, Engineering Sciences, 1989, 4, P. 52–57. (In Russian)

80. Kovalenko A.N. Regulation and thermodynamic stability of non-equilibrium processes of energy conversion of speed. Trudy CKTI, JSC, 1996, 281 (2). (In Russian)

81. Kovalenko A. Inner nonstationarness of energy conversion in non-equilibrium thermodynamic system. Proceedings of the fifth Baltic Heat Transfer Conference, Saint-Petersburg, 21–23 September, SPbGPU, 2009, 1, P. 446–453.

82. Paradisi P., Cesari R., Mainardi F., Tampieri F. The fractional Fick’s law for non-local transport processes. Physica A: Statistical Mechanics and its Applications, 2001, 293 (1), P. 130–142.

83. Nigmatullin R.R. Fractional integral and its physical interpretation. Theor. Math. Phys., 1992, 90, P. 242–251.

84. Marcel O.V. Fractional diffusion equation on fractals: Self-similar stationary solutions in a force field derived from a logarithmic potential. Chaos, Solutions and Fractals, 1994, 4 (2), P. 191–199.

85. Meilanov R.P., Shabanova M.R. The heat equation for media with a fractal structure. Modern high technology, 2007, 8, P. 74–75. (In Russian)

86. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and Applications. Gordon and Breach Science Publishers, 1993, 976 p.

87. Feder J. Fractals. Physics of Solids and Liquids. Plenum Press, New York, 1988, 305 p.

88. Haitun S.D. From the ergodic hypothesis to the fractal picture of the world. Moscow URSS, 2007, 251 p. (In Russian).

89. R´enyi A. On a new axiomatic theory of probability. Acta Mathematica Academiae Scientiarum Hungaricae, 1955, 6, P. 285–335.

90. Klimontovich Yu.L. Entropy and information of open systems. Progress of physical sciences, 1999, 169 (4), P. 443–452. (in Russian)

91. Kovalenko A.N. Fractal characterization of nanostructured materials. Nanosystems: Phys., Chem., Math., 2019, 10 (1), P. 42–49.

92. Dozhdikova O.L., Zarichnyak Yu.P., et al. Anomalies in the concentration relationship of thermal conductivity of sintered composities with an ultradispersed component in the TiN-AlN system. Soviet Powder Metallurgy and Metal Ceramics, 1992, 31 (5), P. 429–433.

93. Alekseev G.N. General heat engineering. Vysshaya shkola, Moscow, 1980, 552 p. (In Russian)

94. Lee J.-K., Yang M. Progress in light harvesting and charge injection of dye-sensitized solar cells. Materials Science and Engineering B, 2011, 176, P. 1142–1160.

95. Bonch-Bruevich V.L., Kalashnikov S.G. Semiconductor Physics. Nauka, Moscow, 1977, 674 p.

96. Afanasyev V.P., Terukov E.I., Sherchenkov A.A. Thin film solar cells based on silicon, 2nd ed. SPbGETU “LETI”, Saint-Petersburg, 2011, 168 p.

97. Andreev V.M., Griliches V.A., Rumyantsev V.D. Photoelectric conversion of concentrated solar radiation. Nauka, Leningrad, 1989, 310 p.

98. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. High-Efficient low-cost photovoltaics. Springer-Verlag, Berlin, Heidelberg, 2009, 227 p.

99. Sorokin S.V., Avdienko P.S., et al. Molecular beam epitaxy of layered group III metal chalcogenides on GaAs (001) substrates. Materials, 2020, 13 (16), 3447.

100. Kalinovskii V.S., Kontrosh E.V., et al. Development and study of the p-i-n GaAs/AlGaAs tunnel diodes for multijunction converters of high-power laser radiation. Semiconductors, 2020, 54, P. 355–361.

101. Ivanov S.V., Chernov M.Y., et al. Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters. Prog. Cryst. Growth Charact. Mater., 2019, 65 (1), P. 20–35.

102. Podoskin A.A., Golovin V.S., et al. Properties of external-cavity high-power semiconductor lasers based on a single InGaAs quantum well at high pulsed current pump. J. Opt. Soc. Am. B-Opt. Phys., 2020, 37 (3), P. 784–788.

103. Andreev V.M., Malevskiy D.A., et al. On the main photoelectric characteristics of three-junction InGaP/InGaAs/Ge solar cells in a broad temperature range (-197°C≤ T ≤ +85°C). Semiconductors, 2016, 50, P. 1356–1361.

104. Alferov Z.I., Andreev V.M. Rumyantsev V.D. Solar photovoltaics: Trends and prospects. Semiconductors, 2004, 38, P. 899–908.

105. Antonyshyn I., Wagner F.R., et al. Micro-scale device – an alternative route for studying the intrinsic properties of solid-state materials: The case of semiconducting TaGeI. Angew.Chem. Int. Ed., 2020, 59 (1), P. 1136–11141.

106. Shpeizman V.V., Nikolaev V.I., et al. The effect of texturing of silicon wafer surfaces for solar photoelectric transducers on their strength properties. Tech. Phys., 2020, 65 (7), P. 1123–1129.

107. Cahen D. Where are we today in research in photovoltaics? 2007, URL: https://www.scribd.com/document/108703482/123.

108. Komissarova T.A., Semenov A.N., et al. Peculiarities of the electrophysical properties of InSb/AlInSb/AlSb heterostructures with a high electron concentration in the two-dimensional channel. Semiconductors, 2014, 48 (3), P. 338–343.

109. Joannopoulos J.D., Lucovsky G. The physics of hydrogenated amorphous silicon I: Structure, Preparation, and Devices. Springer Berlin Heidelberg, 1984, 290 p.

110. Joannopoulos J.D., Lucovsky G. The physics of hydrogenated amorphous silicon II: Electronic and Vibrational Properties. Springer Berlin Heidelberg 1984. 373 p.

111. Ken O.S., Andronikov D.A,, et al. Spectral features of the photoresponse of structures with silicon nanoparticles. Semiconductors, 2014, 48 (11), P. 1518–1524.

112. Ayvazov A.A., Budagyan B.G., Vikhrov S.P., Popov A.I. Disordered semiconductors. MEI Publishing House, Moscow, 1995, 352 p. (in Russian)

113. Chopra K.L., Das S.R. Thin Film Solar Cells. Springer US, 1983, 607 p.

114. Spear W.E., LeComber P.G. Investigation of the localised state distribution in amorphous Si films. J. Non-Cryst. Solids, 1972, 8–10, P. 727– 738.

115. Madan A., LeComber P.G., Spear W.E. Investigation of the density of localized states in a-Si using the field effect technique. J. Non-Cryst. Solids, 1976, 20. P. 239–257.

116. Parashchuk D.Y., Kokorin A.I. Modern photoelectric and photochemical methods of solar power conversion. Russ. J. Gen. Chem., 2009, 79 (11), P. 2543–2555.

117. Semenov K.N., Charykov N.A., et al. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Russian Chem. Reviews, 2016, 85 (1), P. 38–59.

118. Gracheva I.E., Moshnikov V.A., et al. Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes. J. Non-Cryst. Solids, 2012, 358, P. 433–439.

119. Vasiliev R.B., Rumyantseva M.N., et al. Crystallite size effect on the conductivity of the ultradisperse ceramics of SnO2 and In2O3. Mendeleev Communication, 2004, 14 (4), P. 167–169.

120. O’Regan B., Gr¨atzel M. A Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, P. 737–740.

121. Zvereva I.A., Kalinkina L.M., et al. Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor. Glass Physics and Chemistry, 2012, 38 (6), P. 504–510.

122. Kozyukhin S.A., Grinberg V.A., et al. Photoelectrochemical cells based on nanocrystalline TiO2 synthesized by high temperature hydrolysis of ammonium dihydroxodilactatotitanate (IV). Russian Journal of Electrochemistry, 2013, 49 (5), P. 423–427.

123. Kovalev I.A., Petrov A.A., et al. New hierarchical titania-based structures for photocatalysis. Mendeleev Communications, 2018, 28, P. 541– 542.

124. Bai Y., Cao Y., et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Materials, 2008, 7 (8), P. 626–630.

125. Vildanova M.F., Nikolskaia A.B., et al. Nanostructured ZrO2–Y2O3-based system for perovskite solar cells. Doklady Physical Chemistry, 2019, 484 (2), P. 36–38.

126. Larina L.L., Alexeeva O.V., et al. Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Phys., Chem., Math., 2019, 10 (1), P. 70–75.

127. Shevaleevskiy O. The future of solar photovoltics: from physics to chemistry. Pure Appl. Chem., 2008, 80, P. 2079–2089.

128. Vildanova M.F., Nikolskaia A.B., et al. Potassium doping effect on the photovoltaic performance of perovskite solar cells. Tech. Phys. Lett., 2020, 46, P. 231–234.

129. Alexeeva O.V., Kozlov S.S., Larina L.L., Shevaleevskiy O.I. Pt nanoparticle-functionalized RGO counter electrode for efficient dye-sensitized solar cells. Nanosystems: Phys., Chem., Math., 2019, 10 (6), P. 637–641.

130. Belich N., Udalova N., et al. Perovskite puzzle for revolutionary functional materials. Front. Chem., 2020, 8, 550625.

131. Kulova T.L., Semenenko D.A., et al. Cathode materials based on vanadium pentoxide for rechargeable batteries. Electrochemical Energetics, 2008, 8 (4), P. 197–201.

132. Medved’ko A.V., et al. The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2017, 140, P. 169–178.

133. Levshanov A.A., Grishina E.P., et al. Ni self-organized balls as a promising energy storage material. Material J. Phys. Chem. C, 2016, 120 (30), P. 16453–16458.

134. Irgashev R.A., Karmatsky A.A., et al. A facile and convenient synthesis and photovoltaic characterization of novel thieno[2,3-b]indole dyes for dye-sensitized solar cells. Synthetic Metals, 2015, 199, P. 152–158.

135. Zamaraev K.I. Photocatalytic conversion of solar energy. Vol. 1, 2. Nauka, Novosibirsk, 1985, 442 p. (in Russian)

136. Pelizzetti E., Schiavello M. Photochemical conversion and storage of solar energy. Kluwer Academic Publishers, Dordrecht, 1991, 660 p.

137. Zamaraev K.I., Parmon V.N. Photocatalytic conversion of solar energy. Heterogeneous, homogeneous and molecular structurally organized systems: Collection of scientific papers, Nauka, Novosibirsk, 1991, 358 p.

138. Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis. Fundamentals and Applications. BKC, Tokyo, 1999, 176 p.

139. Rempel A.A., Kuznetsova Y.V., et al. High photocatalytic activity under visible light of sandwich structures based on anodic TiO2/CdS nanoparticles/sol–gel TiO2. Top Catal., 2020, 63, P. 130–138.

140. Brdlik P.M. Testing and calculation of solar desalination plants in collected articles: Using solar energy, Publishing house Acad. Sciences of the USSR, Moscow, 1957, 248 p.

141. Gel’dyyev A. Modern methods of water desalination. Ilim, Ashgabat, 1967, 181 p.

142. Ioffe A.F. Semiconductor thermoelements and thermoelectric cooling. London, Infosearch, 1957, 254 p.

143. Ordin S.V. Achieving the problem of thermoelectricity, 2015, URL: http://www.nanonewsnet.ru/articles/2015/dostizheniya-problemy- (in Russian)

144. Rempel A.A. Nanotechnologies. Properties and applications of nanostructured materials. Russ. Chem. Rev., 2007, 76 (5), P. 435–461.

145. Glass fabric, URL: https://novate.ru/blogs/201014/28210/.

146. Daniel-Beck V., Voronin A., Roginskaya N. Thermoelectric generator TGK-3. Radio Journal, 1954, 2, P. 24–25. (in Russian)

147. Shostakovsky P. Modern solutions of thermoelectric cooling for radio electronic, medical, industrial and household appliances. Components and technologies, 2009, 12 (1), P. 40–46. (in Russian)

148. Postnikov V.S. Solid state physics and chemistry. Metallurgiya, 1978, 544 p. (in Russian)

149. Anatychuk L.I., Bulat L.P. Semiconductors under extreme temperature conditions. Nauka, Saint-Petersburg, 2001, 197 p. (in Russian)

150. Di Cicco A., Filipponi A. Semiconductors under extreme conditions. In: Schnohr C., Ridgway M. (eds) X-Ray Absorption Spectroscopy of Semiconductors. Springer Series in Optical Sciences, 2015, 190, Springer, Berlin, Heidelberg.

151. Reay D., Macmichael D. Heat pumps: Design and application. Pergamon Press, Oxford, 1979, 224 p.

152. Pinuela M., Mitcheson P.D., Lucyszyn S. Ambient RF energy harvesting in urban and semi-urban environments. IEEE transactions on microwave theory and techniques, 2013, 61 (7), P. 2715–2726.

153. Cansiz M., Altinel D., Kurt G.K. Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 2019, 174, P. 292–309.

154. Potapov A.A. Fractals, scaling and fractional operators in modern radio engineering and electronics: the current state and development. J. of Radio Electronics, 2010, 1, P. 1–100.

155. Krasnok A.E., Maksymov I.S., et al. Optical nanoantennas. Phys. Usp., 2013, 56 (6), P. 539–564.

156. Bharadwaj P., Deutsch B., Novotny L. Optical Antennas. Advances in Optics and Photonics, 2009, 1 (3), P. 438–483.

157. Novotny L., van Hulst N. Antennas for light. Nature Photonics, 2011, 5, P. 83–90.

158. Giannini V., Fernandes-Dominguez I.A., Heck C.H., Maier S.A. Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem. Rev., 2011, 111 (6), P. 3888–3912.

159. Maksymov I.S., Davoyan A.R., Kivshar Yu.S. Enhanced emission and light control with tapered plasmonic nanoantennas. Appl. Phys. Lett., 2011, 99, 083304.

160. Acar H., Coenen T., Polman A., Kuipers L.K. Dispersive ground plane core–shell type optical monopole antennas fabricated with electron beam induced deposition. ACS Nano, 2012, 6 (9) P. 8226–8232.

161. Suh J.Y., Huntigton M.D., et al. Extraordinary nonlinear absorption in 3D bowtie nanoantennas. Nano Letters, 2012, 12 (1), P. 269–274.

162. Rosa L., Sun K., Juodkazis S. Sierpin´ski fractal plasmonic nanoantennas. Phys. Status Solidi RRL, 2011, 5 (5–6), P. 175–177.

163. Trompoukis C., Daif O.E., et al. Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography. Appl. Phys. Lett., 2012, 101, 103901.

164. Jeong S., Garnett E.C., et al. Hybrid silicon nanocone-polymer solar cells. Nano Lett., 2012, 12 (6), P. 2971–2976.

165. Xu Z., Sadler B.M. Ultraviolet communications: potential and state-of-the-art. IEEE Communications Magazine, 2008, 46 (5), P. 67–73.

166. Elshimy M.A., Hranilovic S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries. J. Opt. Soc. Am. A, 2011, 28, P. 420–428.

167. Shaw G.A., Nischan M.L., et al. NLOS UV communication for distributed sensor systems. Proc. SPIE, 2000, 4126, P. 83–96.

168. Wang L., Li Y., Xu Z., Sadler B.M. Wireless ultraviolet network models and performance in noncoplanar geometry. Proceeding of “2010 IEEE Globecom Workshops”, Miami, FL, USA, 6–10 December, 2010, 1037.

169. Wang L., Xu Z., Sadler B.M. Non-line-of-sight ultraviolet link loss in noncoplanar geometry. Opt. Lett., 2010, 35 (8), P. 1263–1265.

170. Wang L., Xu Z., Sadler B.M. An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry. Opt. Lett., 2011, 36 (7), P. 1224–1226.

171. Wang H., Li J., Qiu K. Ultraviolet communication system in free atmosphere, Patent. CN101986578A China: IPC G02 B 17/06; H04 B 10/07; H04 B 10/11.

172. Wang H., Li J., Qiu K. Day blind ultraviolet laser communication system in free space, Patent. CN101986579A China: IPC G02 B 27/09; H04 B 10/07; H04 B 10/11.

173. Zhen H., Binru L., Qiang L., Zhiqin L. Delay transmission system and method for ultraviolet light communications signals, Patent. CN106656338A China: IPC H04 B 10/11; H04 B 10/29; H04 B 10/297; H04 W 84/12.

174. Bing S. Single-channel ultraviolet (uv) light communication system, Patent CN202918295U China: IPC H04 B 10/11.

175. Xiaoyi L., Juan Y., Fang Z. Method for optimizing blind ultraviolet non line-of-sight Ad-hoc communication network shared channel, Patent CN103647603B China: IPC G06 N 3/12; H04 B 10/11; H04 L 29/06.

176. Wang H., Zhao M., Deng Z. Ultraviolet light communication method and transmitter, Patent CN102638309A China: IPC H04 B 10/114; H04 B 10/50.

177. Pozhidaev V.N. Feasibility of ultraviolet communication links based on the effect of molecular and aerosol scattering in the atmosphere. Radio Engineering and Electronic Physics, 1977, 22 (10), P. 2190–2192. (in Russian)

178. Pozhidaev V.N. Estimation of attenuation and backscattering of millimeter radio waves in meteorological formations. Journal of Communications Technology and Electronics, 2010–2011, 55 (11), P. 1223–1230.

179. Shaw G.A., Siegel A.M., Nischan M.L. Demonstration system and applications for compact wireless ultraviolet communications. Proc. SPIE, 2003, 5071, P. 241–252.

180. Shaw G.A., Siegel A.M., Model J. Extending the range and performance of non-line-of-sight ultraviolet communication links. Proc. SPIE, 2006, 6231, 62310C.

181. Xu Zh., Chen G., Abou-Galala, F., Leonardi M. Experimental performance evaluation of non-line-of-sight ultraviolet communication systems. Proc. SPIE, 2007, 6709, 67090Y.

182. Zhang H., Yin H., et al. Study of effects of obstacle on non-line-of-sight ultraviolet communication links. Opt. Express, 2011, 19 (22), P. 21216–21226.

183. Britvin A.V. The pulse charachteristic estimation of optical atmospheric UV-channel with scattering. Bulletin of the Novosibirsk state university. Series Physics, 2010, 5 (2), P. 5–7. (in Russian)

184. Konstantinov I.S., Vasilyev G.S., et al. Numerical and analytical modeling of wireless UV communication channels for the organization of wireless ad- hoc network. IJCSNS International Journal of Computer Science and Network Security, 2018, 18 (8), P. 98–104.

185. Konstantinov I.S., Vasilyev G.S, et al. Modeling and Analysis of the Characteristics of Ultraviolet Channels under Different Conditions of Radiation Propagation for the Organization of Wireless AD-HOC Network. J. of Adv. Research in Dynamical and Control Systems, 2018, 10 (2), P. 1853–1859.

186. Belov V.V., Abramochkin V.N., et al. Bistatic optoelectronic communication systems: Field experiments in artificial and natural water reservoirs. Atmos Ocean Opt, 2017, 30 (2), P. 366–371.

187. Aouini A. System for converting wind energy, Patent. US20130181458A1 USA: IPC F03 D 9/00.

188. Vorotnikov G.V. The modeling of the thermoacoustic electric generator by quadrupole approximation approach. Vestnik of Samara University. Aerospace and Mechanical Engineering, 2012, 3 (34), P. 191–199.

189. Almjasheva O.V., Gusarov V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russian Journal of Applied Chemistry, 2016, 89 (6), P. 851–856.

190. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special features of formation of nanocrystalline BiFeO3 via the glycinenitrate combustion method. Russian Journal of General Chemistry, 2016, 86 (10), P. 2256–2262.

191. Kovalenko A.N. High-temperature superconductivity: From macro- to nanoscale structures, Nanosystems: Phys., Chem., Math., 2016, 7 (6), P. 941–970.

192. Fedorov P.P. Nanotechnology and material science. Nanosystems: Phys., Chem., Math., 2020, 11 (3), P. 314–315.

193. Almjasheva O.V., Garabadzhiu A.V., et al. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: Phys., Chem., Math., 2017, 8 (3), P. 391–396.

194. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. J. Crystal Growth, 2017, 467, P. 88–92.

195. Proskurina O.V., Tomkovich M.V., et al. Formation of Nanocrystalline BiFeO3 under hydrothermal conditions. Russian Journal of General Chemistry, 2017, 87 (11), P. 2507–2515.

196. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Phys., Chem., Math., 2017, 8 (5), P. 620–627.

197. Lomanova N.A., Tomkovich M.V., Osipov A.V., Ugolkov V.L. Synthesis of nanocrystalline materials based on the Bi2O3–TiO2 system. Russian Journal of General Chemistry, 2019, 89 (10), P. 2075–2081.

198. Zlobin V.V., Krasilin A.A., Almjasheva O.V. Effect of heterogeneous inclusions on the formation of TiO2 nanocrystals in hydrothermal conditions. Nanosystems: Phys., Chem., Math., 2019, 10 (6), P. 733–739.

199. Lomanova N.A., Panchuk V.V., et al. Bismuth orthoferrite nanocrystals: magnetic characteristics and size effects. Ferroelectrics, 2020, 569, P. 240–250.

200. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Cation doping approach for nanotubular hydrosilicates curvature control and related applications. Crystals, 2020, 10, 654.

201. Tugova E.A., Karpov O.N., Besedina N.A., Yastrebov S.G. Peculiarities of inelastic scattering of light by Nd1-xBixFeO3 nanoclusters. Nano Express, 2020, 1 (1), P. 010064–010072.

202. Shchelokova A., Ivanov V., et al. Ceramic resonators for targeted clinical magnetic resonance imaging of the breast. Nat Commun., 2020, 11, P. 3840–3846.

203. Egorysheva A.V., Skorikov V.M. Efficient nonlinear optical material BiB3O6 (BIBO). Inorg Mater., 2009, 45 (13), P. 1461–1476.

204. Sleight Arthur W. Oxide superconductors. Thermochimica Acta, 1991, 174, P. 1–7.

205. Miyazaki C.M., Riul A. Low-Dimensional Systems: Nanoparticles. Nanostructures, 2017, 5, P. 125–146.

206. Vance M.E., Kuiken T., et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. J. Nanotechnol., 2015, 6 (1), P. 1769–1780.

207. Chislova, I.V., Matveeva A.A., Volkova A.V., Zvereva I.A. Sol-gel synthesis of nanostructured perovskite-like gadolinium ferrites. Glass Phys. Chem., 2011, 37 (6), P. 653–660.

208. Mukasyan A.S., Rogachev A.S. Combustion synthesis: mechanically induced nanostructured materials. J. Mater. Sci., 2017, 52, P. 11826– 11833.

209. Andrievski R.A. Review of thermal stability of nanomaterials. J. Mater. Sci., 2014, 49 (4), P. 1449–1460.

210. Tretyakov Yu.D. Self-organisation processes in the chemistry of materials. Russ. Chem. Rev., 2003, 72 (8), P. 651–679.

211. Kazin P.E., Tretyakov Yu.D. Microcomposites based on superconducting cuprates. Russ. Chem. Rev., 2003, 72 (10), P. 849–865.

212. Defay R., Prigogine I., Sanfeld A. Surface thermodynamics. J. Colloid Interface Sci., 1977, 58 (3), P. 498–510.

213. Van-der-Vaal’s I.D., Konstamm F. Kurs termostatiki (Course of Thermostatics). Moscow, ONTI, 1936, 452 p. (in Russian)

214. Rusanov A.I. Phase equilibria and surface phenomena. Khimiya, Leningrad, 1967, 388 p.

215. Adamson A.W., Gast A.P. Physical chemistry of surfaces (six edition). John Wiley and Sons, New-York, 1997, 804 p.

216. Gusarov V.V., Suvorov S.A. Transformations of nonautonomous phases and densification of polycrystalline systems. Journal of Applied Chemistry of the USSR, 1992, 65 (7), P. 1227–1235.

217. Gusarov V.V. Kinetic features of heat effect of melting in polycrystalline systems. Russ. J. Appl. Chemistry, 1994, 67 (3), P. 364–366.

218. Gusarov V.V., Suvorov S.A. Rapid thermal packing of materials. Russ. J. Appl. Chem., 1993, 66 (3), P. 431–437.

219. Gusarov V.V., Suvorov S.A. Thickness of 2-dimentional nonautonomous phases in local equilibrium polycrystalline systems based on a single bulk phase. Russ. J. Appl. Chem., 1993, 66 (7), P. 1212–1216.

220. Gusarov V.V., Suvorov S.A. Melting points of locally equilibrium surface phases in polycrystalline systems based on a single volume phase. J. Appl. Chem. of the USSR, 1990, 63 (8), P. 1560–1565.

221. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally activated transformations of 2D nonautonomous phases and contradiction of polycrystalline oxide materials. Inorganic Materials, 1995, 31 (3), P. 320–323.

222. Babaev A.A., Zobov M.E., Terukov E.I., Tkachev A.G. A technology for producing polymeric composites based on carbon nanofibers. Prot. Met. Phys. Chem. Surf., 2020, 56 (4), P. 734–739.

223. Bespalova Zh.I., Khramenkova A.V. The use of transient electrolysis in the technology of oxide composite nanostructured materials: review. Nanosystems: Phys., Chem., Math., 2016, 7 (3), P. 433–450.

224. Khaliullin S.M., Bamburov V.G., et al. CaZrO3 synthesis in combustion reactions with glycine. Doklady Chemistry, 2015, 461 (2), P. 93–95.

225. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 2008, 12 (3–4), P. 44–50.

226. Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 2007, 53, P. 117–166.

227. Lee J., Mahendra S., Alvarez P.J.J. Nanomaterials in the construction industry: A Review of their applications and environmental health and safety considerations. ACS Nano, 2010, 4 (7), P. 3580–3590.

228. Vasilevskay A.K., Almjasheva O.V., Gusarov V.V. Peculiarities of structural transformations in zirconia nanocrystals. J. Nanopart. Res., 2016, 18 (7), P. 188–198.

229. Van Tac D., Mittova V.O., Almjasheva O.V.,Mittova I.Ya. Synthesis and magnetic properties of nanocrystalline Y1-xCdxFeO3-ă (0 ≤ x ≤ 0.2). Inorg Mater., 2011, 47 (10),P. 1141–1146.

230. Uvarov N.F., Vanek P. Stabilization of new phases in ion-conducting nanocomposites. Journal of Materials Synthesis and Processing, 2000, 8 (5/6), P. 319–326.

231. Nguyen A.T., Nguyen V.Y., et al. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Phys., Chem., Math., 2020, 11 (4), P. 468–473.

232. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Phys. Chem. Math., 2017, 8 (4), P. 476–502.

233. Zhukov V.P., Kostenko M.G., Rempel A.A., Shein I.R. Influence of carbon or nitrogen dopants on the electronic structure, optical properties and photocatalytic activity of partially reduced titanium dioxide. Nanosystems: Phys. Chem. Math., 2019, 10 (3), P. 374–382.

234. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. Solution-combustion synthesis of MZrO3 zirconates (M = Ca, Sr, Ba) in open reactor: thermodynamic analysis and experiment. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26 (2), P. 93–101.

235. Abryutin V., Nesterov S., Romanko V., Kholopkin A. Application of nanotechnology to create highly efficient thermoelectric materials. Nanoindustry, 2010, 1, P. 24–26.

236. Ordin S.V., Wang W.N. Thermoelectric effects on micro and nano level. J. Advances in Energy Research, 2011, 9, P. 311–342.

237. Matsukevich, I.V., Klyndyuk, A.I., et al. Thermoelectric properties of Ca3-xBixCo4O9+δ (0.0 ≤ x ≤ 1.5) ceramics. Inorg Mater., 2016, 52 (6), P. 593–599.

238. Pikalova E.Y., Kolchugin A.A., Bamburov V.G. Ceria-based materials for high-temperature electrochemistry applications. International Journal of Energy Production and Management, 2016, 1 (3), P. 272–283.

239. Almyasheva O.V., Gusarov V.V., et al. Nanocrystals of ZrO2 as sorption heat accumulators. Glass Physics and Chemistry, 2007, 33 (6), P. 587–589.

240. Chupakhina T.I., Melnikova N.V., et al. Synthesis, structure and dielectric properties of new ceramics with K2NiF4-type structure. J. Eur. Ceram. Soc., 2019, 39 (13), P. 3722–3729.

241. Galakhov V.R., Turkin D.I., et al. Effect of transition metal oxidations state on crystal structure and magnetic ordering in frustrated ABaM4O7 systems (A=Y, Ca; M=Co, Fe): X-ray diffraction, soft X-ray absorption, and magnetization studies. Current Applied Physics, 2018, 18, P. 155–162.

242. Talanov M.V., Bokov A.A., Marakhovsky M.A. Effects of crystal chemistry and local random fields on relaxor and piezoelectric behavior of lead-oxide perovskites. Acta Materialia, 2020, 193, P. 40–50.

243. Pikalova E.Y., Bamburov V.G., et al. The development of electrolytes for intermediate temperature solid oxide fuel cells. WIT Transactions on Ecology and the Environment, 2014, 190 (1) P. 261–272.

244. Lim H-D., Lee B., et al. Rational design of redox mediators for advanced Li–O2 batteries. Nature Energy, 2016, 1 (6), 16066.

245. Zhuk A.Z., Kleymenov B.V., et al. Aluminum-hydrogen energy. JIHT RAS, Moscow, 2007, 278 p. (in Russian)

246. Brusnetsov V.P. Solid oxide fuel cells: collection of articles. scientific and technical articles. RFNC-VNIITF Publishing House, Snezhinsk, 2003, 376 p. (in Russian)

247. Predtechensky M.R., Smal A.N., Nakoryakov V.E., Bobrenok O.F. Fuel cells based on carbonate melts based on electrodes of a new design. Proceedings of the Institute for Advanced Study, 2003, 1, P. 2–13. (in Russian)

248. Merkulov O.V., Markov A.A., et al. Structural features and high-temperature transport in SrFe0.7Mo0.3O3-δ . J. Solid State Chem., 2018, 258, P. 447–452.

249. Lukashin A.V., Eliseev A.A. Physical methods for the synthesis of nanomaterials. MSU, Moscow, 2007, 32 p. (in Russian)

250. Kovalenko A.N., Kalinin N.V. Thermodynamic instability of compound and formation of nanosized particles nearby the critical point of phase generating media. Nanosystems: Phys., Chem., Math., 2014, 5 (2), P. 258–293.

251. Feynman R.P. There’s plenty of room at the bottom. An invitation to enter a new field of physics. Engineering and Science magazine, 1960, 23 (5), P. 22–36.

252. Kolesnik I.V., Eliseev A.A. Chemical methods for the synthesis of nanomaterials. Ed. Tretyakov Yu.D. MSU, Moscow, 2011, 41 p. (in Russian)

253. Rowe D.M. (ed.). Handbook of Thermoelectrics. CRC Press, Boca Raton, FL, 1995, 701 p.

254. Yepremyan A.O., Aroutiounian V.M., Vahanyan A.I. Figure of merit of modern semiconducting thermoelectric materials. Int. Sci. J. for Alternative Energy and Ecology, 2005, 5 (25), P. 7–18.

255. Gridnev S.A., Kalinin Yu.E., Makagonov V.A., Shuvaev A.S. Promising thermoelectric materials. Int. Sci. J. for Alternative Energy and Ecology, 2013, 1-2 (118), P. 117–125 (in Russian).

256. Sherchenkov A.A., Shtern Yu.I., et al. Current state of thermoelectric material science and the search for new effective materials. Nanotechnologies in Russia, 2015, 10(11–12), P. 827–840.

257. Shevelkov A.V. Chemical aspects of the design of thermoelectric materials. Russ. Chem. Rev., 2008, 77 (1), P. 1–19.

258. Goldsmid H.J. Bismuth telluride and its alloys as materials for thermoelectric generation. Materials, 2014, 7, P. 2577–2592.

259. Sootsman J.R., Chung D.Y., Kanatzidis M.G. New and old concept in thermoelectric materials. Angew. Chem. Int. Ed., 2009, 48, P. 8616– 8639.

260. Populoh S., Aguirre M.H., et al. High figure of merit in (Ti, Zr, Hf) NiSn half-Heusler alloys. Scripta Materialia, 2012, 66, P. 1073–1076.

261. Minnich A.J., Dresselhaus M.S., Ren Z.F., Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci., 2009, 2, P. 468–479.

262. Tugova E.A., Klyndyuk A.I., Gusarov V.V. Synthesis of solid solutions of double layered Ruddlesden–Popper phases in the Gd2O3–SrO– Fe2O3–Al2O3 system. Russian Journal of Inorganic Chemistry, 2013, 58 (7), P. 848–854.

263. Tugova E.A. P/RS intergrowth type phases in the Ln2O3–MO–Al2O3 systems. Russian Journal of General Chemistry, 2016, 86 (11), P. 2410–2417.

264. Zvereva I.A., Tugova E.A., et al. The impact of Nd3+/La3+ substitution on the cation distribution and phase diagram in the La2SrAl2O7– Nd2SrAl2O7 system. Chimica Techno Acta, 2018, 5 (1), P. 80–85.

265. Carvillo P., Chen Y., et al. Thermoelectric performance enhancement of calcium cobaltite through barium grain boundary segregation. Inorg. Chem., 2015, 54, P. 9027–9032.

266. Matsukevich I.V., Klyndyuk A.I., et al. Synthesis and properties of materials based on layered calcium and bismuth cobaltites. Russ. J. Appl. Chem., 2015, 88 (8), P. 1241–1247.

267. Jankowski O., Huber S., et al. Towards highly efficient thermoelectric: Ca3Co4O9+δ · nCaZrO3 composite. Ceramics – Silikaty, 2014, 58 (2), P. 106–110.

268. Gupta R.K., Sharma R., Mahapatro A.K., Tandon R.P. The effect of ZrO2 dispersion on the thermoelectric power factor of Ca3Co4O9. Physica B, 2016, 483, P. 48–53.

269. Krasutskaya N.S., Klyndyuk A.I., et al. Thermoelectric properties of the ceramics based on the layered calcium cobaltite doped by bismuth oxide. Refractories and Technical Ceramics, 2016, 10, P. 25–29.

270. Kozhevnikov V.L., Leonidov I.A., et al. High-temperature thermopower and conductivity of La1-xBaxMnO3 (0.02 ≤ x ≤ 0.35). J. Solid State Chem., 2003, 172 (1), P. 1-5.

271. Estemirova, S.K., Yankin A.M., et al. Phase composition and structure of La1-xCaxMnO3+δ (0 ≤ x ≤ 0.2) solid solutions. Inorg Mater., 2008. 44, P. 1251–1256.

272. Xu J., Wei C., Jia K. Properties and device of Ca2.7Sr0.3Co4O9 and Ca0.95Sm0.05MnO3 thermoelectric materials. J. Chin. Ceram. Soc., 2010, 38 (6), P. 1136–1139.

273. Han L., Jiang Y., et al. High temperature thermoelectric properties and energy transfer devices of Ca3Co4-xAgxO9 and Ca1-ySmyMnO3. J. Alloys Compd., 2011, 509, P. 8970–8977.

274. Lim C.-H., Choi S.-M., Seo W.-S., Park H.-H. A power-generation test for oxide-based thermoelectric modules using p-type Ca3Co4O9 and n-type Ca0.9Nd0.1MnO3 legs. J. Electron. Mater., 2012, 41 (6), P. 1247–1255.

275. Zhu Y., Wang C., et al. Influence of Dy/Bi dual doping on thermoelectric performance of CaMnO3 ceramics. Mat. Chem. Phys., 2014, 144, P. 385–389.

276. Thiel P., Populoh S., Yoon S., Weidenkaff A. Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution. J. Solid State Chem., 2015, 229, P. 62–67.

277. Yasukawa M., Murayama N. High-temperature thermoelectric properties of the oxide material: Ba1􀀀xSrxPbO3 (x = 0—0.6). J. Mat. Sci. Lett., 1997, 16 (21), P. 1731–1735.

278. Yasukawa M., Murayama N. A promising oxide material for high-temperature thermoelectric energy conversion: Ba1-xSrxPbO3 solid solution system. Mat. Sci. and Eng. B, 1998, 54, P. 64–69.

279. Yasukawa M., Kono T. Preparation of dense BaPbO3-based ceramics by a coprecipitation and their thermoelectric properties. J. Alloys and Comp., 2006, 426, P. 420–425.

280. Chizhova E.A., Klyndyuk A.I. Synthesis and thermoelectric properties of ceramics based on barium-strontium metaplumbates. Glass Physics and Chemistry, 2013. 39 (4), P. 453–457.

281. Muta H., Kurosaki K., Yamanaka S. Thermoelectric properties of doped BaTiO3–SrTiO3 solid solution. J. of Alloys Compd., 2004, 368, P. 22–24.

282. Ohta H. Thermoelectrics based on strontium titanate. Mater. Today, 2007, 10, P. 44–49.

283. Ohta H., Sugiura K., Koumoto K. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-Type SrTiO3. Inorg. Chem., 2008, 47, P. 8429–8436.

284. Wang Y.F., Lee K.H., Ohta H., Koumoto K. Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n = 1, 2) ceramics. Ceram. Int., 2008, 34, P. 849–852.

285. Tang J.,WangW., Zhao G.-L., Li Q. Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO2. J. Phys.: Condens. Matter, 2009, 21, 205703.

286. Liu J., Wang H.C., et al. Synthesis and thermoelectric properties of Sr0.95La0.05TiO3-δ–TiO2 solid solutions. Solid State Sciences, 2010, 12, P. 134–137.

287. Wang H.C., Wang C.L., et al. Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic. Mat. Res. Bull., 2010, 45, P. 809–812.

288. Zhang Y., Feng B., et al. Thermoelectric phase diagram of the SrTiO3–SrNbO3 solid solution system. J. Appl. Phys. Lett., 2017, 121, 185102.

289. Boston R., Schmidt W.L., et al. Protocols for the fabrication, characterization, and optimization of n-type thermoelectric ceramic oxides. Chem. Mater., 2017, 29 (1), P. 265–280.

290. Robert R., Bocher L., et al. Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters. Progr. Solid State Chem., 2007, 35, P. 447–455.

291. Tomeˇs P., Trottmann M., et al. Thermoelectric Oxide Modulus (TOMs) for the Direct Conversion of Stimulated Solar Radiation into Electrical Energy. Materials, 2010, 3, P. 2801–2814

292. Suter C., Tomeˇs P., Weidenkaff A., Steinfeld A. Heat transfer and geometrical analysis of thermoelectric converters driven by concentrated solar radiation. Materials, 2010, 3, P. 2735–2752.

293. Tugova E.A. New DySrAlO4 compound synthesis and formation process correlations for LnSrAlO4 (Ln = Nd, Gd, Dy) series. Acta Metallurgica Sinica (English Letters, 2016, 29 (5), P. 450–456.

294. Semenov N.N. Thermal theory of combustion and explosions. III Theory of normal flame propagation. Progress of Physical Science (USSR), 1940, 24 (4) 80 p.

295. Tretyakov Yu.D., Lukashin A.V., Eliseev A.A. Synthesis of functional nanocomposites based on solid-phase nanoreactors. Russ. Chem. Rev., 2004, 73 (9), P. 899–923.

296. Shaporev A.S., Zeng H., Ivanov V.K. Tret’yakov Yu.D. Mechanism of formation of finely dispersed zinc oxide in homogeneous hydrolysis of zinc nitrate in the presence of hexamethylenetetramine. Dokl. Chem., 2009, 426 (1), P. 101–104.

297. Tugova E.A., Zvereva I.A. Formation mechanism of GdFeO3 nanoparticles under the hydrothermal conditions. Nanosystems: Phys., Chem., Math., 2013, 4 (6), P. 851–856.

298. Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V. Gusarov V.V. Preparation of nanocrystalline alumina under hydrothermal conditions. Inorg. Mater., 2005, 41 (5), P. 460–467.

299. Klyndyuk A., Chizhova E., Matsukevich I., Tugova E. Thermoelectric properties of inhomogeneous ceramics based on the layered calcium cobaltate. Universal Journal of Materials Science, 2019. 7 (4), P. 43–53.

300. Wu N.Y., Holgate T.C., et al. High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering. Journal of the European Ceramic Society, 2014, 34 (4), P. 925–931.

301. Agilandeswari K., Ruban Kumar A. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca3Co4O9 by a starch assisted sol–gel combustion method. Journal of Magnetism and Magnetic Materials, 2014, 364, P. 117–124.

302. Sotelo A., Rasekh Sh., et al. Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances. Journal of Solid State Chemistry, 2015, 221, P. 247–254.

303. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders. Russian J. of Appl. Chem., 2016, 89 (8), P. 1228–1236.

304. Bachina A.K., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion. Nanosystems: Phys., Chem., Math., 2017, 8 (5). P. 647–653.

305. Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method. Russ. J. Appl. Chem., 2017. 90 (8), P. 980–985.

306. Kondrashkova I.S., Martinson K.D., Zakharova N.V., Popkov V.I. Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russ. J. Gen. Chem., 2018, 88 (12), P. 2465–2471.

307. Martinson K.D., Ivanov V.A., et al. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosystems: Phys., Chem., Math., 2019, 10 (6), P. 694–700.

308. Komova O.V., Simagina V.I., et al. A modified glycine-nitrate combustion method for one-step synthesis of LaFeO3. Adv. Powder Technol., 2016, 27 (2), P. 496–503.

309. HaoX., Zhang Y. Low temperature gel-combustion synthesis of porous nanostructure LaFeO3 with enhanced visible-light photocatalytic activity in reduction of Cr(VI). Mater. Lett., 2017, 197, P. 120–122.

310. Salehabadi A., Salavati-Niasari M., Gholami T., Khoobi A. Dy3Fe5O12 and DyFeO3 nanostructures: Green and facial auto-combustion synthesis, characterization and comparative study on electrochemical hydrogen storage. Int. J. Hydrog. Energy, 2018, 43 (20), P. 9713–9721.

311. Popkov V.I., Almjasheva O.V., Gusarov V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ. J. Appl. Chem., 2014, 87 (10), P. 1417–1421.

312. Popkov V.I., Tugova E.A., Bachina A.K., Almjasheva O.V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ. J. Gen. Chem., 2017, 87 (11), P. 1771–1780.

313. Popkov V.I., Almjasheva O.V., et al. The role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite. Doklady Chem., 2016, 471 (4), P. 439–443.

314. Popkov V.I., Almjasheva O.V., et al. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Cer. Intern., 2018, 44 (17), P. 20906–20912.

315. Almjasheva O.V., Lomanova N.A., et al. The minimum size of oxide nanocrystals – phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Phys., Chem., Math., 2019, 10 (4), P. 428–437.

316. Kopeychenko E.I., Mittova I.Ya., et al. Nanocrystalline heterogeneous multiferroics based on yttrium ferrite (core) with calcium zirconate (titanate) shell. Russ. J. Gen. Chem., 2020, 90, P. 1030–1035.

317. Alekseeva O.A., Naberezhnov A.A., Stukova E.V., Popkov V.I. The effect of barium titanate admixture on the stability of potassium nitrate ferroelectric phase in (1 - x)KNO3 + (x)BaTiO3 composites. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2015, 1 (3), P. 229–234.

318. Popkov V.I., Tolstoy V.P., Semenov V.G. Synthesis of phase-pure superparamagnetic nanoparticles of ZnFe2O4 via thermal decomposition of zinc-iron layered double hydroxysulphate. Journal of Alloys and Compounds, 2020, 813, 152179.

319. Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge International Science Publishing, 2004, 351 p.

320. Martinson K.D., Sakhno D.D., et al. Synthesis of Ni0.4Zn0.6Fe2O4 spinel ferrite and microwave adsorption of related polymer composite. Nanosystems: Phys., Chem., Math., 2020, 11 (5), P. 595–600.

321. Rempel A.A. Hybrid nanoparticles based on sulfides, oxides, and carbides. Russian Chemical Bulletin, 2013, 62 (4), P. 857–868.

322. Martinson K.D., Kozyritskaya S.S., Panteleev I.B., Popkov V.I. Low coercivity microwave ceramics based on LiZnMn ferrite synthesized via glycine-nitrate combustion. Nanosystems: Phys., Chem., Math., 2019, 10 (3), P. 313–317.

323. Shevchenko E.V., Charnaya E.V., et al. Superconductivity in a Ga–Ag nanocomposite with dendritic morphology. Physica C, 2020, 574, 1353666.

324. Albadi Y., Popkov V.I. Dual-modal contrast agent for magnetic resonance imaging based on gadolinium orthoferrite nanoparticles: synthesis, structure and application prospects. Medicine: theory and practice, 2019, 4, P. 35–36.

325. Pinho S.L.C., Amaral J.S., et al. Synthesis and characterization of rare-earth orthoferrite LnFeO3. Nanoparticles for Bioimaging, 2018, 38, P. 3570–3578.

326. Albadi Y., Martinson K.D., et al. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: the effect of strong agglomeration on the magnetic behavior. Nanosystems: Phys., Chem., Math., 2020, 11 (2), P. 252–259.

327. Dmitriev D.S., Popkov V.I. Layer by layer synthesis of zinc-iron layered hydroxy sulfate for electrocatalytic hydrogen evolution from ethanol in alkali media. Nanosystems: Phys., Chem., Math., 2019, 10 (4), P. 480–487.

328. Chebanenko M.I., Lobinsky A.A., Nevedomskiy V.N., Popkov V.I. NiO-decorated graphitic carbon nitride toward electrocatalytic hydrogen production from ethanol. Dalton Trans., 2020, 49, P. 12088–12097.

329. Kodintsev I.A., Martinson K.D., Lobinsky A.A., Popkov V.I. SILD synthesis of the efficient and stable electrocatalyst based on CoO–NiO solid solution toward hydrogen production. Nanosystems: Phys., Chem., Math., 2019, 10 (6), P. 681–685.

330. Belmesov A.A., Baranov A.A., Levchenko A.V. Anodic Electrocatalysts for Fuel Cells Based on Pt/Ti1-xRuxO2. Russ. J. Electrochem., 2018, 54, P. 493–499.

331. Voloshin Y.Z., Buznik V.M., Dedov A.G. New types of the hybrid functional materials based on cage metal complexes for (electro) catalytic hydrogen production. Pure Appl. Chem. 2019, 92 (7), P. 1159–1174.

332. Semishchenko K., Tolstoy V., Lobinsky A. A novel oxidation-reduction route for layer-by-layer synthesis of TiO2 Nanolayers and investigation of its photocatalytical properties. J. Nanomater., 2014, 10, P. 1–7.

333. Cam T.S., Vishnievskaia T.A., Popkov V.I. Catalytic oxidation of CO over CuO/CeO2 nanocomposites synthesized via solution combustion method: effect of fuels. Reviews on Advanced Materials Science, 2020, 59, P. 1–13.

334. Sheshko T.F., Sharaeva A.A., et al. Carbon oxide hydrogenation over GdBO3 (B = Fe, Mn, Co) complex oxides: Effect of carbon dioxide on product composition. Pet. Chem., 2020, 60, P. 571–576.

335. Cam T.S., Vishnevskaya T.A., et al. Urea–nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio. J. Mater. Sci., 2020, 55, P. 11891–11906.

336. Kryuchkova T.A., Kost V.V., et al. Effect of cobalt in GdFeO3 catalyst systems on their activity in the dry reforming of methane to synthesis gas. Petroleum Chemistry, 2020, 60 (5), P. 609–615.

337. Cam T.S., Petrova A.E., et al. On the SCS approach to the CeO2/CuO nanocomposite: thermochemical aspects and catalytic activity in n-hexane conversion. Russ. J. Inorg. Chem., 2020, 65 (5), P. 725–732.

338. Shamanaeva I.A., Yu Zh., et al. Role of texture and acidity of SAPO-34 in methanol to olefins conversion. Pet. Chem., 2020, 60, P. 471–478.

339. Martinson K.D., Kondrashkova I.S., et al. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Technology, 2020, 31 (1), P. 402–408.

340. Chebanenko M.I., Zakharova N.V., Popkov V.I. Synthesis and visible-light photocatalytic activity of graphite-like carbon nitride nanopowders. Russian Journal of Applied Chemistry, 2020, 94 (4), P. 490–497.

341. Shcherban N.D., M¨aki-Arvela P., et al. Melamine-derived graphitic carbon nitride as a new effective metal-free catalyst for Knoevenagel condensation of benzaldehyde with ethylcyanoacetate. Catal. Sci. Technol., 2018, 8, P. 2928–2937.

342. Chebanenko M.I., Zakharova N.V., Lobinsky A.A., Popkov V.I. Ultrasonic-assisted exfoliation of graphitic carbon nitride and its electrocatalytic performance in process of ethanol reforming. Semiconductors, 2019, 53 (16), P. 28–33.

343. Ivanov V.K., Baranchikov A.E., et al. Effect of hydrothermal and ultrasonic/hydrothermal treatment on the phase composition and micromorphology of yttrium hydroxocarbonate. Russ. J. Inorg. Chem., 2007, 52 (9), P. 1321–1327.

344. Ivanov V.K., Kopitsa, G.P., et al. Mesostructure of hydrated hafnia xerogels. Dokl. Chem., 2009, 427 (1), P. 160–163.

345. Rutberg F.G., Gusarov V.V., et al. Analysis of physicochemical properties of nanoparticles obtained by pulsed electric discharges in water. Tech. Phys., 2012, 57 (12), P. 1641–1645.

346. Rutberg F.G., Kolikov V.A., et al. Phase composition and magnetic properties of iron oxide nanoparticles obtained by impulse electric discharge in water. High Temperature, 2016, 54 (2), P. 170–174.

347. Wu J., Shen X., et al. Solvothermal synthesis and characterization of sandwich-like grafen/ZnO nanocomposite. Appl. Surface Sci., 2010, 256, P. 2826–2830.

348. Andrievski R.A. Size-dependent effects in properties of nanostructured materials. Rev. Adv. Mater. Sci., 2009, 21, P. 107–133.

349. Tananaev I.V., Fedorov V.B, Morokhov I.D., Malyukova L.V. Fundamentals of physical chemistry of substances in a metastable ultradispersed state and prospects for their use. Inorg. Mater., 1984, 20 (6), P. 1026–1033. (in Russian)

350. Tananaev I.V., Fedorov V.B., et al. Characteristic peculiarities of ultrafine structures, Dokl. Akad. Nauk USSR, 1985, 283 (6), P. 1364–1368. (in Russian)

351. Gleiter H. Nanostructured material: basic concepts and microstructure. Acta Mater., 2000, 48 (1), P. 1–29.

352. Golovin Y.I. Nanoindentation and mechanical properties of materials at submicro- and nanoscale levels: recent results and achievements. Phys. Solid State, 2021, 63, P. 1–41.

353. Schoonman J. Nanostructured materials in solid state ionics. Solid State Ionics, 2000, 135, P. 5–19.

354. Burtsev V.A., Kalinin N.V., Luchinsky A.V. Electrical explosion of conductors and its application in electrophysical installations. Energoatomizdat, Moscow, 1990, 288 p.

355. Oreshkin V.V., Sedoi V.S., Chemezova L.I. Application of electrical explosion of wires to obtain nanoscale powders. Applied Physics, 2001, 3, P. 94–102. (in Russian)

356. Kotov Yu.A., Ivanov V.V. Powder nanotechnology to create functional materials and devices for electrochemical energy. Herald of the RAS, 2008, 78 (9), P. 777–787. (in Russian)

357. Bulgakov A.V., Bulgakova N.M., Burakov I.M. Synthesis of nanoscale materials under the influence of powerful energy flows on matter. IT SB RAS, Novosibirsk, 2009, 462 p. (in Russian)

358. Ilyin A.P. Development of electroexplosive technology for producing nanopowders in the Research Institute of high voltage at the Tomsk Polytechnic University. Bulletin of the Tomsk Polytechnic University, 2003, 306 (1), P. 133–139.

359. Gusarov V.V., Almjasheva O.V. The role or status of substances in the formation of structure and properties of materials. In: Nanomaterials: properties and applications. Scientific world, Moscow, 2014, 456 p. (in Russian)

360. Aleskovskiy V.B. Chemistry and technology of solid substances. J. Appl. Chem. USSR, 1974, 47, P. 2145–2156. (in Russian)

361. Aleskovskiy V.B. Chemical Assembly materials. Bulletin of the USSR Academy of Sciences, 1975, 45, P. 48–51. (in Russian)

362. Malygin A.A. The molecular layering nanotechnology: basis and application J. Ind. Eng. Chem., 2006, 12 (1), P. 1–11.

363. Malygin A.A., Drozd V.E., Malkov A.A., Smirnov V.M. From V. B. Aleskovskii’s “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition. Chem. Vap. Deposition, 2015, 21, P. 216–240.

364. Malygin A.A., Malkov A.A., Sosnov E.A. Structural dimensional effects and their application in the ‘core-nanoshell’ systems synthesized by the molecular layering. Russian Chemical Bulletin, International Edition, 2017, 66 (11), P. 1939–1962.


Review

For citations:


Kovalenko A.N., Tugova E.A., Popkov V.I., Karpov O.N., Klyndyuk A.I. Personalized energy systems based on nanostructured materials. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(3):368-403. https://doi.org/10.17586/2220-8054-2021-12-3-368-403

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)