The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches
https://doi.org/10.17586/2220-8054-2019-10-4-428-437
Abstract
The minimum crystallite size in a group of oxides has been analyzed as a function of their synthesis conditions, critical nucleus size and the crystal structure parameters. Nanocrystals were synthesized by solution combustion, hydrothermal synthesis and heat treatment in air of the precipitated hydroxides. Aluminum and iron oxides, titania and zirconia, cobalt ferrite, AFeO3 ferrites (A = Bi, RE), Aurivillius phases Bim+1Ti3Fem−3O3m+3 (m=3 – 9), as well as solid solutions based on these phases were chosen as the objects of the study. The presence of a correlation between the crystalline oxide unit cell parameters and the synthesized crystals minimum size is shown. A conclusion was made about the impossibility to use only the thermodynamic concept of the critical nucleus for determining the minimum possible particle size of a new phase in some cases of oxide nanocrystals synthesis. The paper demonstrates a necessity to use crystal-chemical criteria that complement the methods of phenomenological thermodynamics and kinetics for determining the minimum possible particle size of the resulting crystalline oxide phases synthesized under the considered conditions.
About the Authors
O. V. AlmjashevaRussian Federation
St. Petersburg, 197376
Politekhnicheskaya St. 26, St. Petersburg, 194021
N. A. Lomanova
Russian Federation
Politekhnicheskaya St. 26, St. Petersburg, 194021
V. I. Popkov
Russian Federation
Politekhnicheskaya St. 26, St. Petersburg, 194021
O. V. Proskurina
Russian Federation
Politekhnicheskaya St. 26, St. Petersburg, 194021
Moskovsky Pr., 26, St. Petersburg, 190013
E. A. Tugova
Russian Federation
Politekhnicheskaya St. 26, St. Petersburg, 194021
V. V. Gusarov
Russian Federation
Politekhnicheskaya St. 26, St. Petersburg, 194021
References
1. Tammann G. Aggregatzustande. Zustands¨ anderungen der Materie in Abh¨ angikeit von Druck und Temperatur Verlag von Leopold Voss.¨ , Leipzig, 1922, 237 p.
2. Volmer M. Kinetik der Phasenbildung. T. Steinkopff, Dresden-Leipzig, 1939, 126 p.
3. Frenkel J. A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys., 1939, 7 (7), P. 538–546.
4. Zel’dovch Ya. On the theory of new phase formation. Cavitation. ZhETF, 1942, 12 (11/12), P. 525–538, (in Russian).
5. Pound G.M., La Mer V.K. Kinetics of crystalline nucleus formation in supercooled liquid tin. J. Amer. Chem. Soc., 1952, 74, P. 2323–2332.
6. Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys., 1959, 31 (3), P. 688–700.
7. Lothe J., Pound G.M. Reconsideration of nucleation theory. J. Chem. Phys., 1962, 36 (8), P. 2080–2085.
8. Abraham F.F., Pound G.M. Re-examination of homogeneous nucleation theory: statistical thermodynamics aspects. J. Chem. Phys., 1968, 48 (2), P. 732–740.
9. Reiss H. Treatment of droplike clusters by means of the classical phase integral in nucleation theory. J. Stat. Phys., 1970, 2 (1), P. 83–104.
10. Kuni F.M., Rusanov A.I. Statistical theory of aggregative equilibrium. Theor. Math. Phys., 1970, 2 (2), P. 192–206.
11. Blander M., Katz J.L. The thermodynamics of cluster formation in nucleation theory. J. Stat. Phys., 1972, 4 (1), P. 55–59.
12. Katz J.L., Donohue M.D. A kinetic approach to homogeneous nucleation theory. Adv. Chem. Phys., 1979, 40, P. 137.
13. Slezov V.V., Sagalovich V.V. Diffusive decomposition of solid solutions. Sov. Phys. Usp., 1987, 30 (1), P. 23–45.
14. Ruth V., Hirth J.P., Pound G.M. On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase. J. Chem. Phys., 1988, 88 (11), P. 7079–7087.
15. Brener E.A., Marchenko V.I., Formation of nucleation centers in a crystal. JETP Lett., 1992, 56 (7), P. 368–372.
16. Oxtoby D.W. Nucleation of first-order phase transitions. Acc. Chem. Res., 1998, 31 (2), P. 91–97.
17. Antonov N.M., Popov I.Yu., Gusarov V.V. Model of spinodal decomposition of phases under hyperbolic diffusion. Phys. Solid State., 1999, 41 (5), P. 824–826.
18. Gorbachev Yu.E., Nikitin I.S. Evolution of cluster size distribution during nucleation with rapidly changing dynamic gas processes. Tech. Phys., 2000, 45 (12), P. 1538–1548.
19. Oxtoby D.W. Phase transitions: Catching crystals at birth. Nature, 2000, 406, P. 464–465.
20. Kuni F.M., Shchekin A.K., Grinin A.P. Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation. Phys. Usp., 2001, 44 (4), P. 331–370.
21. Xu D., Johnson W.L. Geometric model for the critical-value problem of nucleation phenomena containing the size effect of nucleating agent. Phys. Rev. B, 2005, 72, P. 052101.
22. Kukushkin S.A., Osipov A.V. First-order phase transition through an intermediate state. Phys. Solid State, 2014, 56 (4), P. 792–800.
23. Tolman R.C. The effect of droplet size on surface tension. J. Chem. Phys., 1949, 17 (3), P. 333–337.
24. Rusanov A.I. Phase equilibria and surface phenomena. Khimiya, Leningrad, 1967, 388 p. (in Russian); German edition: Rusanov A.I. Phasengleichgewichte und Grenzflachenerscheinungen. Akademie-Verlag, Berlin, 1978, 465 p.¨
25. Bykov T.V., Shchekin A.K. Surface tension, tolman length, and effective rigidity constant in the surface layer of a drop with a large radius of curvature. Inorganic Materials, 1999, 35 (6), P. 641–644.
26. Gordon P.V., Kukushkin S.A., Osipov A.V. Perturbation methods in the kinetics of nanocluster growth. Phys. Solid State., 2002, 44 (11), P. 2175–2180.
27. Samsonov V.M., Bazulev A.N., Sdobnyakov N.Y. Rusanov’s linear formula for the surface tension of small objects. Doklady Physical Chemistry, 2003, 389 (1–3), P. 83–85.
28. Magomedov M.N. Dependence of the surface energy on the size and shape of a nanocrystal. Phys. Solid State, 2004, 46 (5), P. 954–968.
29. Rekhviashvili S.Sh., Kishtikova E.V. On the size dependence of the surface tension. Tech. Phys., 2011, 56 (1), P. 143–146.
30. Kukushkin S.A., Osipov O.V. New phase formation on solid surfaces and thin film condensation. Progress in surface science, 1996, 5 (1), P. 1–107
31. Kuni F.M., Rusanov A.I. The homogeneous nucleation theory and the fluctuation of the center of mass of a drop. Phys. Letters. A, 1969, 29 (6), P. 337–338.
32. Kligman F.I., Rusanov A.I. On the thermodynamic equilibrium states of disperse systems with suspended particles. Koll. Zh., 1977, 39 (1), P. 44–47. (in Russian)
33. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by condition of hydrothermal synthesis. Russ. J. General Chem., 1999, 69 (8), P. 1219–1222.
34. Yau S.-T., Vekilov P.G. Quasi-planar nucleus structure in apoferritin crystallization. Nature, 2000, 406 (6795), P. 494–497.
35. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russ. J. General Chem., 2002, 72 (6), P. 849–853.
36. Sharikov F.Yu., Almjasheva O.V., Gusarov V.V. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Russ. J. Inorg. Chem., 2006, 51 (10), P. 1538–1542.
37. Kuznetsova V.A., Almjasheva O.V., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Phys. Chem., 2009, 35 (2), P. 205–209.
38. Krasilin A.A., Almjasheva O.V., Gusarov V.V. Effect of the structure of precursors on the formation of nanotubular magnesium hydrosilicate. Inorganic Materials, 2011, 47 (10), P. 1111–1115.
39. Bugrov A.N., Almjasheva O.V. Formation of Cr2O3 nanoparticles under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2 (4), P. 126–132.
40. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5 (3), P. 405–417.
41. Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO3 nanoparticles under the hydrothermal condition. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5 (5), P. 703–708.
42. Popkov V.I., Almjasheva O.V., Gusarov V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ. J. Appl. Chem., 2014, 87 (10), P. 1417–1421.
43. Vasilevskaya A.K., Almjasheva O.V., Gusarov V.V. Formation of nanocrystals in the ZrO2 –H2O system. Russ. J. Gen. Chem., 2015, 85 (12), P. 2673–2676.
44. Almjasheva O.V., Gusarov, V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89 (6), P. 851–856.
45. Popkov V.I., Almjasheva O.V., et al. The role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite. Dokl. Chem., 2016, 471 (2), P. 356–359.
46. Komlev A.A., Panchuk V.V., et al. Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O system. Russ. J. Appl. Chem., 2016, 89 (12), P. 1930–1936.
47. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (6), P. 1031–1049.
48. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (4), P. 568–572.
49. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. of Gen. Chem., 1997, 67 (12), P. 1846–1851.
50. Gusarov V.V., Malkov A.A., Ishutina Zh.N., Malygin A.A. Phase formation in a nanosize silicon oxide film on the surface of aluminum oxide. Tech. Phys. Lett., 1998, 24 (1), P. 1–3.
51. Gusarov V.V., Ishutina Zh.N., Malkov A.A., Malygin A.A. Solid-phase reaction of mullite formation in nanosized composite films. Dokl. Phys. Chem., 1997, 357 (1–3), P. 360–363.
52. Ivanov V.K., Polezhaeva O.S. Synthesis of ultrathin ceria nanoplates. Rus. J. Inorg. Chem., 2009, 54 (10), P. 1528–1530.
53. Cubovˇ a K.,¨ Cuba V. Synthesis of inorganic nanoparticles by ionizing radiation – a review.ˇ Radiation Physics and Chemistry, 2019, 158, P. 153–164.
54. Roca A.G., Gutierrez L., et al. Design strategies for shape-controlled magnetic iron oxide nanoparticles.´ Advanced Drug Delivery Reviews, 2019, 138, P. 68–104.
55. Rajeshkumar S., Naik Poonam. Synthesis and biomedical applications of cerium oxide nanoparticles – A Review. Biotechnology Reports, 2018, 17, P. 1–5.
56. Krl A., Pomastowski P., et al. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 2017, 249, P. 37–52.
57. Saad W.S., Prud’homme R.K. Principles of nanoparticle formation by flash nanoprecipitation. Nanotoday, 2106, 11 (2), P. 212–227.
58. Calvache-Munoz J., PradoJorge F.A., Rodr˜ ´ıguez-Paez E. Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism´ of particle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, P. 146–159.
59. Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology. Progress in crystal growth and characterization of materials, 2007, 53 (2), P. 117–166.
60. Merzhanov A.G. SHS Process: Combustion Theory and Practice. Archivum Combustionis, 1981, 1 (1–2), P. 23–48.
61. Merzhanov A.G. Theory and Practice of SHS: Worldwide state of the art and the newest results. Int. J. Self-Prop. High-Temp. Synth., 1993, 2 (2), P. 113–158.
62. Mukasyan A.S., Rogachev A.S. Combustion synthesis: mechanically induced nanostructured materials. J. Mater. Sci., 2017, 52, P. 11826– 11833.
63. Popkov V.I., Almjasheva O.V., et al. Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products. Russ. J. Inorg. Chem., 2015, 60 (10), P. 1193–1198.
64. Popkov V.I., Almjasheva O.V., et al. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycinenitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (6), P. 866–874.
65. Popkov V.I., Almjasheva O.V., Schmidt M.P., Gusarov V.V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russ. J. Gen. Chem., 2015. 85 (6), P. 1370–1375.
66. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the glycinenitrate combustion method. Russ. J. Gen. Chem., 2016, 86 (10), P. 2256–2262.
67. Chen Y., Yang J., et al. Synthesis YFeO3 by salt-assisted solution combustion method and its photocatalytic activity. J. Ceram. Soc. Japan., 2014, 122 (1422), P. 146–150.
68. Khaliullin Sh.M., Zhuravlev V.D., et al. Solution-combustion synthesis and eletroconductivity of CaZrO3. Int. J. Self-Prop. High-Temp. Synth., 2015, 24 (2), P. 83–88.
69. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (4), P. 476–502.
70. Boldyrev V.V. Reactivity of solids. J. of Thermal Analysis, 1993, 40 (3), P. 1041–1062.
71. Kalinin S.V., Vertegel A.A., Oleynikov N.N., Tretyakov Y.D. Kinetics of solid state reactions with fractal reagent. J. Mater. Synth., Process, 1998, 6 (5), P. 305–309.
72. Al’myasheva O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russ. J. Gen. Chem., 2010, 80 (3), P. 385–390.
73. Ashgriz N., Brocklehurst W., Talley D. Mixing mechanisms in a pair of impinging jets. J. Propul. Power., 2001, 17 (3), P. 736.
74. Handbook of Atomization and Sprays/Ed. N. Ashgriz. Toronto: Springer Science + Business Media, LLC, 2011. Ch. 30., P. 685.
75. Erkoc E., Fonte C.P., et al. Numerical study of active mixing over a dynamic flow field in a T-jets mixer – Induction of resonance. Chem. Eng. Res. Design., 2016, 106, P. 74.
76. Ravi Kumar D.V., Prasad B.L.V., Kulkarni A.A. Impinging jet micromixer for flow synthesis of nanocrystalline MgO: Role of mixing/impingement zone. Ind. Eng. Chem. Res., 2013, 52, P. 17376.
77. Proskurina O.V., Nogovitsin I.V., et al. Formation of BiFeO3 nanoparticles using impinging jets microreactor. Russ. J. Gen. Chem., 2018, 88 (10), P. 2139–2143.
78. Proskurina O.V., Abiev R.S., et al. Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impingingjets microreactor. Chemical Engineering and Processing – Process Intensification, 2019, 143, P. 107598.
79. Proskurina O.V., Sivtsov E.V., et al. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), P. 206–214.
80. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. J. Chem. Tech. App., 2017, 1 (1), P. 7–13.
81. Koutzarova T., Kolev S., et al. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique. Phys. Stat. Sol., 3 (5), P. 1302–1307.
82. Ganguli A.K., Ahmad T., Vaidya S., Ahmed J. Microemulsion route to the synthesis of nanoparticles. Pure Appl. Chem., 2008, 80 (11), P. 2451–2477.
83. Koltsov I., Kimmel G., et al. The new nano-enabled phase map of ZrO2–Al2O3. Scientific Reports, 2019, 9, P. 5540.
84. Kovalenko A.N., Tugova E.A. Thermodynamics and kinetics of non-autonomous phases formation in nanostructured materials with variable functional properties. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (5), P. 641–662.
85. Tauson V.L., Akimov V.V. Effect of crystallite size on solid state miscibility: applications to the pyrite- cattierite system. Gochimica et Cosmocimica Acta, 1991, 55 (10), P. 2851–2859.
86. Emerging materials for energy conversion and storage. Edited by: Cheong K.Y., Impellizzeri G., Amorim Fraga M., 2018, 418 p.
87. Singh S., Barick K.C., Bahadur D. Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater. nanotechnol., 2013, 3, 20:2013.
88. NIST-JANAF Thermochemical Tables. URL: http://kinetics.nist.gov/janaf/ .
89. Iorish V.S, Belov G.V. IVTANTHERMO/WIN – database and software for high temperature chemical processes modeling. 9th Int. Conf. on High Temperature Materials Chemistry: Proceedings, Pennsylvania (USA), 1997. P. 42.
90. Aruna S.T., Mukasyan A.S., Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 2008, 12 (3–4), P. 44–50.
91. Gabala M.A., Al-Solami F., et al. Auto-combustion synthesis and characterization of perovskite-type LaFeO3 nanocrystals prepared via different routes. Ceramics International, 2019, 45 (13), P. 16530–16539.
92. Karpov O.N., Tomkovich M.V., Tugova E.A. Formation of Nd1−xBixFeO3 nanocrystals under conditions of glycine-nitrate synthesis. Russ. J. Gen. Chem., 2018, 88 (10), P. 2128–2133.
93. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. J. Cryst. Growth, 2017, 467, P. 88–92.
94. Tugova E.A., Gusarov V.V. Structure peculiarities of nanocrystalline solid solutions in GdAlO3–GdFeO3 system. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (3), P. 352–356.
95. Almjasheva O.V., Fedorov B.A., Smirnov A.V., Gusarov V.V. Size, morphology and structure of the particles of zirconia nanopowder obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2010, 1 (1), P. 26–36.
96. Klein S.M., Choi J.H., Pine D.J., Lange F.F. Synthesis of rutile titania powders: Agglomeration, dissolution, and reprecipitation phenomena. J. Mater. Res., 2003, 18 (6), P. 1457–1464.
97. Krishnankutty-Nair P. Kumar Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and titania-alumina nanocomposites. Scripta Metallurgica et Materialia, 1995, 32 (6), P. 873–877.
98. Vasilevskaia A.K., Popkov V.I., Valeeva A.A., Rempel’ A.A. Formation of nonstoichiometric titanium oxides nanoparticles TinO2n−1 upon heat-treatments of titanium hydroxide and anatase nanoparticles in a hydrogen flow. Russ. J. Appl. Chem., 2016, 89 (8), P. 1211–1220.
99. Guang M., Xia Y., et al. Controllable synthesis of transparent dispersions of monodisperse anatase-TiO2 nanoparticles and nanorods. Materials Chemistry and Physics, 2019, 224, P. 100–106.
100. Macwan D.P., Dave P.N., Chaturvedi S. A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater. Sci., 2011, 46 (11), P. 3669–3686.
101. Li C.-J., Yang G.-J., Wang Z. Formation of nanostructured TiO2 by flame spraying with liquid feedstock. Mater. Lett., 2003, 57 (13–14), P. 2130–2134.
102. Kominami H., Kohno M., Kera Y. Synthesis of brookite-type titanium oxide nano-crystals in organic media. J. Mater. Chem., 2000, 10 (5), P. 1151–1156.
103. Deng Q., Wei M., et al. Brookite-type TiO2 nanotubes. Chem. Commun., 2008, 31, P. 3657–3659.
104. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89 (8), P. 1228–1236.
105. Popkov V.I., Tolstoy V.P., Omarov S.O., Nevedomskiy V.N. Enhancement of acidic-basic properties of silica by modification with CeO2– Fe2O3 nanoparticles via successive ionic layer deposition. Appl. Surf. Sci., 2019, 473, P. 313–317.
106. Li L., Pu S., et al. High-purity disperse α-Al2O3 nanoparticles synthesized by high-energy ball milling. Adv. Powder Technol., 2018, 29 (9), P. 2194–2203.
107. Tabesh S., Davar F., Loghman-Estarki M.R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloys Comp., 2018, 730, P. 441–449.
108. Kotlovanova N.E., Matveeva A.N., et al. Formation and Acid–Base Surface Properties of Highly Dispersed η-Al2O3 Nanopowders. Inorg. Mater., 2018, 54 (4), P. 392–400.
109. Kuchina Y.A., Subbotin D.I., et al. Metal ferrites synthesis by AC plasma torch. J. Phys. Conf. Ser., 2018, 1135, P. 012095.
110. Dudnik Y.D., Safronov A.A., et al. Plasma ways to obtain ultrafine oxides. J. Phys. Conf. Ser., 2019, 1147, P. 012127.
111. Elouafi A., Moubah R., et al. Finite size effects on the magnetocaloric properties around blocking temperature in γ-Fe2O3 nanoparticles. Physica A: Statistical Mechanics and Its Applications, 2019, 523, P. 260–267.
112. Hasan M., Islam Md. F., et al. A soft chemical route to the synthesis of BiFeO3 nanoparticles with enhanced magnetization. Mat. Res. Bull., 2016, 73, P. 179–186.
113. Ortiz-Quinonez J.L., Diaz D., et al. Easy synthesis of high-purity BiFeO3 nanoparticles: new insights derived from the structural, optical, and magnetic characterization. Inorg Chem., 2013, 52, P. 10306–10317.
114. Park T.-J., Papaefthymiou G.C., et al. Size- dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett., 2007, 7, P. 766–772.
115. Proskurina O.V., Tomkovich M.V., et al. Formation of Nanocrystalline BiFeO3 under Hydrothermal Conditions. Russ. J. Gen.Chem., 2017, 87 (11), P. 2507–2515.
116. Morales L.A., Sierra-Gallego G., Barrero C.A., Arnache O. Relative recoilless F-factors in REFeO3 (RE = rare-earth La, Pr, Nd and Sm) orthoferrites synthesized by self-combustion method. Materials Science and Engineering B, 2016, 211, P. 94–100.
117. Luu M.D., Dao N.N., et al. A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As(V) adsorption. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7, P. 025015.
118. Chanda S., Saha S., Dutta A., Sinha T.P. Raman spectroscopy and dielectric properties of nanoceramic NdFeO3. Mater. Res. Bull., 2013, 48 (4), P. 1688–1693.
119. Shanker J., Rao G.N., Venkataramana K., Babu D.S. Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys.Lett. A, 2018, 382 (40), P. 2974–2977.
120. Atta N.F., El-Ads E.H., Galal A. Evidence of Core-Shell Formation between NdFeO3 nano-perovskite and ionic liquid crystal and its application in electrochemical sensing of metoclopramide. J. Electrochem. Soc., 2016, 163 (7), P. B325–B334.
121. Atta N.F., Galal A., Ali S.M. The Effect of the Lanthanide Ion-Type in LnFeO3 on the Catalytic Activity for the Hydrogen Evolution in Acidic Medium. Int. J. Electrochem. Sci., 2014, 9, P. 2132–2148.
122. Atta N.F., Binsabt M.H., El-Ads E.H., Galal A. Synthesis of neodymium-iron nanoperovskite for sensing applications of an antiallergic drug. Turk. J. Chem., 2017, 41 (4), P. 476–492.
123. Ho T.G., Ha T.D., et al. Nanosized perovskite oxide NdFeO3 as material for a carbon-monoxide catalytic gas sensor. Adv. Nat. Sci: Nanosci. Nanotechnol., 2011, 2, P. 015012.
124. Yousefi M., Soradi Zeid S., Khorasani-Motlagh M. Synthesis and characterization of nano-structured perovskite type neodymium orthoferrite NdFeO3. Curr. Chem. Lett., 2017, 6 (1), P. 23–30.
125. Hao Y.J., Li B., Liu R.H., Li F.T. Synthesis of NdFeO3 perovskites in a reverse microemulsion and its visible light photocatalytic activity. Adv. Mater. Res., 2011, 282–283, P. 593–596.
126. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russ. J. Appl. Chem., 2014, 87 (2), P. 167–171.
127. Popkov V.I., Almjasheva O.V., et al. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater. Sci.: Mater. Electron., 2017, 28 (10), P. 7163–7170.
128. Popkov V.I., Almjasheva O.V., et al. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceram. Int., 2018, 44 (17), P. 20906–20912.
129. Popkov V.I., Tugova E.A., Bachina A.K., Almyasheva O.V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ. J. Gen. Chem., 2017, 87 (11), P. 2516–2524.
130. Gimaztdinova M.M., Tugova E.A., Tomkovich M.V., Popkov V.I. Glycine-nitrate combustion synthesis of GdFeO3 nanocrystals. Condens. Matter and Interphases, 2016, 18 (3), P. 422–431.
131. Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method. Russ. J. Appl. Chem., 2017, 90 (8), P. 1214–1218.
132. Kondrashkova I.S., Martinson K.D., Zakharova N.V., Popkov V.I. Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russ. J. Gen. Chem., 2018, 88 (12), P. 2465–2471.
133. Zhi-hui C., Jun-fu Q., et al. Preparation of Bi4Ti3O12 nanopower by azeotropic co-precipitation and dielectric properties of the sintered ceramic. Ceram. Intern., 2010, 36 (1), P. 241–244.
134. Chen D., Jiao X. Hydrothermal synthesis and characterization of Bi4Ti3O12 powders from different precursors. Materials Research Bulletin, 2001, 36(1–2), P. 355–363.
135. Al-Amani U., Sreekantan S., Fauzi A.M.N., Khairunisak A.R., Warapong K. Soft combustion technique: Solution combustion synthesis and low-temperature combustion synthesis; to prepare Bi4Ti3O12 powders and bulk ceramics. Science of Sintering, 2012, 44 (2), P. 211–221.
136. Zhang H., Ke H., et al. Crystallisation process of Bi5Ti3FeO15 multiferroic nanoparticles synthesized by a sol–gel method. J. Sol-Gel Sci. Technol., 2018, 85 (1), P. 132–139.
137. Gautam A., Singh K., et al. Crystal structure and magnetic property of Nd doped BiFeO3 nanocrytallites. Mater. Lett., 2011, 65, P. 591–594.
138. Mishra R.K., Pradhan D.K., Choudhary R.N.P., Banerjee A. Dipolar and magnetic ordering in Nd-modified BiFeO3 nanoceramics. J. Magn. Magnetic Mater., 2008, 320, P. 2602–2607.
139. Almjasheva O.V., Smirnov A.V., et al. Structural features of ZrO2–Y2O3 and ZrO2–Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84 (5), P. 804–809.
140. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov V.A. Formations of aluminum titanate in compositions with a high level of spatial and structural conjugation of components. Russ. J. Gen. Chem., 1994, 64 (4), P. 554.
Review
For citations:
Almjasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(4):428–437. https://doi.org/10.17586/2220-8054-2019-10-4-428-437