Preparation and properties of CeO2 sols stabilized by polyvinyl alcohol
Abstract
The CeO2 sols stabilized by polyvinyl alcohol (PVA) were obtained from solution of cerium nitrate (III) in the presence of hydrogen peroxide and ammonia. X-ray diffraction, transmission electron microscopy, the pH metric method, ultraviolet spectroscopy and infrared spectroscopy were used to investigate the compositions and properties of the sols. It was observed that the PVA stabilizes the colloidal solution of cerium dioxide. The stability of the solution depends on the mass content of PVA and pH. The surface of various CeO2 particles exhibiting the property of an acceptor interacts with OH groups of PVA. CeO2 sol with 5 wt.% PVA and pH 8.55 (particle size 67 nm) has sun protection properties (UVA/UVB = 0.64) and is characterized by low photocatalytic activity, cytotoxicity and genotoxicity.
About the Authors
S. A. KuznetsovaRussian Federation
Tomsk, Siberia
A. A. Gordeev
Russian Federation
Tomsk, Siberia
D. A. Fedorishin
Russian Federation
Tomsk, Siberia
V. V. Kozik
Russian Federation
Tomsk, Siberia
References
1. Paul J., Meechan C.W. Use of Ultraviolet Lights in Biological Safety Cabinets: A Contrarian View. Appl. Bios., 2006, 11 (4), P. 222–227.
2. Hirst S.M., Karakoti A.S., et al. Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009, 5 (24), P. 2848–2856.
3. Bocca B., Caimi S., et al. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues. Sci. Total. Environ., 2018, 630, P. 922–930.
4. Serpone N., Dondi D., Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg. Chem. Acta, 2007, 360, P. 794–802.
5. Barbosa J.S., Neto D.M.A., et al. Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation. Ultrason. Sonochem., 2018, 48, P. 340–348.
6. Bairi V.G., Lim J-H., Fong A., Linde Sean W. Size characterization of metal oxide nanoparticles in commercial sunscreen products. J. Nanopart. Res., 2017, 19, 256.
7. Reinosa J.J., Docio C.M.A., Ram´ ´ırez V.Z., Lozano J.F.F. Hierarchical nano ZnO-micro TiO2 composites: High UV protection yield lowering photodegradation in sunscreens. Ceram. Int., 2018, 44 (3), P. 2827–2834.
8. Kryczyk A., Zmudzki P., et al. The impact of ZnO and TiO2 on the stability of clotrimazole under UVA irradiation: Identification of photocatalytic degradation products and in vitro cytotoxicity assessment. J. Pharm. Biomed. Anal., 2017, 145, P. 283–292.
9. Shuwang D., Ling Z., et al. Controllable tartaric acid modified ZnO crystals and their modification determined optical, super hydrophilic/hydrophilic and photocatalytic properties. J. Alloys Compd., 2018, 768, P. 214–229.
10. Gu Y., Wang L., et al. Study on Preparation and Functional Finishing of TiO2 Supported Nano ZnO. J. Nanosci. and Nanotech., 2018, 18 (11), P. 7703–7712.
11. Wamer W.G., Yin J.J., Wei R.R. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical. Biol. Med., 1997, 23, P. 851–858.
12. Li R., Yabe S., et al. UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes. Mat. Chem. Phys., 2002, 75, P. 39–44.
13. Li R., Yabe S., et al. Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics, 2002, 151, P. 235–241.
14. Yamashita M.., Kameyama K., et al. Synthesis and microstructure of calcia doped ceria as UV filters. J. Mat. Sci., 2002, 37, P. 683–687.
15. Yabe S., Sato T. Cerium oxide for sunscreen cosmetics. J. Solid State Chem., 2003, 171, P. 7–11.
16. Herrling T., Seifert M., Jung K. Cerium Dioxide: Future UV-filter in Sunscreen? SOFW-Journal, 2013, 139 (5), P. 11–14.
17. Zholobak N.M., Ivanov V.K., et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiolog. B: Biology, 2011, 102, P. 32–38.
18. Samai B., Chall S., Mati S.S., Bhattacharya S.C. Role of Silver Nanoclusters in the Enhanced Photocatalytic Activity of Cerium Oxide Nanoparticles. Eur. J. Inorg. Chem., 2018, P. 3224–3231.
19. Apostolescu N., Cernatescu C., et al. Promoting effect of ceria on the catalytic activity of CeOˇ 2–ZnO polycrystalline materials. Environ. Eng. and Manag. J., 2018, 17 (4), P. 765–770.
20. Usharani S., Rajendran V. RTFM, RTPL and photocatalytic activity of CeO2/ZrO2 nanocomposites. Chin. J. Phys., 2017, 55 (6), P. 2588–2596.
21. Moongraksathum B., Chen Y. CeO2-TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Sci. Technol., 2017, 82, P. 772–782.
22. Fujita N., Kamada K. Protective effect of CeO2 nanoparticles on photo-induced oxidative damage of DNA. J. Ceram. Soc. Jpn., 2014, 122 (1422), P. 141–145.
23. Laouedj N., Elaziouti A., Benhadria N., Bekka A. CeO2 nanoscale particles: Synthesis, characterization and photocatalytic activity under UVA light irradiation. J. Rare Earths., 2018, 36 (6), P. 575–587.
24. Vatanparast M., Saedi L. Sonochemical-assisted synthesis and characterization of CeO2 nanoparticles and its photocatalytic properties. J. Mater. Sci. Mater. Electron., 2018, 29 (9), P. 7107–7113.
25. Liu Zh., Li X., et al. Planar-dependent oxygen vacancy concentrations in photocatalytic CeO2 nanoparticles. Cryst. Eng. Comm., 2018, 20, P. 204–212.
26. Gao H., Yang H., Yang G., Wang Sh. Effects of oxygen vacancy and sintering temperature on the photoluminescence properties and photocatalytic activity of CeO2 nanoparticles with high uniformity. Mater. Technol., 2018, 33 (5), P. 321–332.
27. Yuan S., Xu B., et al. Development of the visible?Light Response of CeO´ 2?x with a high Ce3+ content and Its Photocatalytic Properties. Chem. Cat. Chem., 2018, 10, P. 1267–1271.
28. So J-H., Oh M-H., Lee J-D., Yang S-M. Effects of Polyvinyl Alcohol on the Rheological Behavior and Phase Stability of Aqueous Silica Suspensions. J. hem. ng. Jpn., 2001, 34 (2), P. 262–268.
29. Dippon U., Pabst S., Klitzke S. Colloidal stabilization of CeO2 nanomaterials with polyacrylic acid, polyvinyl alcohol or natural organic matter. Sci. Tota. Environ., 2018, 645, P. 1153–1158.
30. Slizhov Y.G., Matveev T.N., Minakova T.S. Acid-base properties of the surface of chromatographic sorbents modified by metal acetylacetonates. Russ. J. Phys. Chem. A, 2012, 86 (3), P. 463–467.
31. Jalava J., Taavitsaine V., Haario H., Lamberg L. Determination of particle and crystal size distribution from turbidity spectrum of TiO2 pigments by means of t-matrix. J. Quant. Spectrosc. Radiat. Transfer, 1998, 60 (3), P. 399–409.
32. Department of Health and Human Services. Food and Drug Administration. 21 CFR Parts 347 and 352 [WDocket No. 1978N0038] (formerly Docket No. 78N0038) RIN 0910AF43, Sunscreen Drug Products for Over-the-Counter Human Use; Proposed Amendment of Final Monograph, Federal Register. 2007, 72 (165), P. 49070–49122.
33. Diffey B.L. A method for broad spectrum classification of sunscreens. Int. J. Cosmet. Sci., 1994, 16, P. 47–52.
34. Guo Z., Zhou B., Sun W.L.X., Luo D. Hydrogen – rich saline protects against ultraviolet B radiation injury in rats. J. Biomed. Res., 2012, 26 (5), P. 365–371.
35. Davies E.K., Boyle Y., et al. Ultraviolet B-induced inflammation in the rat: A model of secondary hyperalgesia? PAIN, 2011, 152 (12), P. 2844–2851.
36. Bishop T., Hewson D.W., et al. Characterisation of ultraviolet-B-induced inflammation as a model of hyperalgesia in the rat. PAIN, 2007, 131 (1–2), P. 70–82.
37. Liman R., Acikbas Y., Cigerci I.H. Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests.ˇ Ecotoxicol. Environ. Saf., 2019, 168, P. 408–414.
38. Shishatskaya E.I., Dragana N., et al. Short-term culture of monocytes as an in vitro evaluation system for bionanomaterials designated for medical use. Food Chem Toxicol., 2016, 96, P. 302–308.
39. Popov A.P., Priezzhev A.V., Lademann J., Myllyla R. TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J. Phys. D, 2005, 38, P. 2564–2570.
40. Cross S.E., Innes B., et al. Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin. Pharmacol. Physiol., 2007, 20 (3), P. 148–154.
41. Prosanov I.Y., Bulina N.V., Gerasimov K.B. Complexes of polyvinyl alcohol with insoluble inorganic compounds. Phys. solid state, 2013, 55 (10), P. 2132–2135.
42. Prosanov I.Y., Matvienko A.A. Study of PVA thermal destruction by means of IR and RAMAN spectroscopy. Phys. solid state, 2010, 52 (10), P. 2203–2206.
43. Tsunekawa S., Sivamohan R., et al. Structural study on monosize CeO2x nano-particles. Nanostruct. Mater., 1999, 11, P. 141–147.
44. Khalipova O.S., Kuznetsova S.A., Kozik V.V. Composition and properties of CeO2–SiO2 composite films prepared from film-forming solution. Russ. J. Inorg. Chem., 2014, 59 (9), P. 913–917.
45. Li Z., Aly Hassan A., Sahle-Demessie E., Sorial G.A. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Res., 2013, 47, P. 6457–6466.
46. Saadat-Monfared A., Mohseni M. Polyurethane nanocomposite films containing nano-cerium oxide as UV absorber; Part 2: Structural and mechanical studies upon UV exposure. Colloids Surfaces A, 2014, 441, P. 752–757.
Review
For citations:
Kuznetsova S.A., Gordeev A.A., Fedorishin D.A., Kozik V.V. Preparation and properties of CeO2 sols stabilized by polyvinyl alcohol. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(4):456–465.