Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells
https://doi.org/10.17586/2220-8054-2019-10-1-70-75
Abstract
Very wide-bandgap undoped and Y2O3-doped ZrO2 nanoparticles were synthesized and their structural, optical, morphological and energy characteristics were investigated. It was found that the bandgap value in ZrO2 decreases with Y2O3 doping. The developed materials were used for fabrication of nanostructured photoelectrodes for perovskite solar cells (PSCs) with the architecture of glass/FTO/ZrO2– Y2O3/CH3NH3PbI3/spiro-MeOTAD/Au. The power conversion efficiency in the PSCs based on ZrO2–Y2O3 photoelectrodes was significantly higher than that for undoped ZrO2 photoelectrodes. We have found that nanostructured layers, based on very wide-bandgap materials could efficiently transfer the injected electrons via a hopping transport mechanism.
Keywords
About the Authors
L. L. LarinaRussian Federation
Kosygin St. 4, Moscow, 119334
O. V. Alexeeva
Russian Federation
Kosygin St. 4, Moscow, 119334
O. V. Almjasheva
Russian Federation
Professora Popova St. 5, Saint Petersburg, 197376
V. V. Gusarov
Russian Federation
Politekhnicheskaya St. 26, Saint Petersburg, 194021
S. S. Kozlov
Russian Federation
Kosygin St. 4, Moscow, 119334
A. B. Nikolskaia
Russian Federation
Kosygin St. 4, Moscow, 119334
M. F. Vildanova
Russian Federation
Kosygin St. 4, Moscow, 119334
O. I. Shevaleevskiy
Russian Federation
Kosygin St. 4, Moscow, 119334
References
1. Shevaleevskiy O. The future of solar phtovoltics: from physics to chemistry. Pure Appl. Chem., 2008, 80, P. 2079–2089.
2. Kuznetsov S.V., Morozov O.A., et al. Ca1−x−yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics. Nanosystems: Phys. Chem. Math., 2018, 9 (2), P. 259–262.
3. Shi Z., Jayatissa A.H. Perovskite solar cells: from the atomic level to film quality and device performance. Materials, 2018, 57 (10), P. 2554–2569.
4. Ho-Baillie A. Perovskites cover silicon textures. Nat. Energy, 2018, 17, P. 751–752.
5. Marinova N., Tress W., et al. Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS Nano, 2015, 9, P. 4200–4209.
6. Vildanova M.F., Kozlov S.S., et al. Niobium-doped titanium dioxide nanoparticles for electron transport layers in perovskite solar cells. Nanosystems: Phys. Chem. Math., 2017, 8 (4), P. 540–545.
7. Vildanova M.F., Nikolskaia A.B., et al. Novel types of dye-sensitized and perovskite-based ntandem solar cells with a common counter electrode. Tech. Phys. Lett., 2018, 44 (2), P. 126–129.
8. Kozlov D.A., Lebedev V.A., et al. The microstructure effect on the Au/TiO2 and Ag/TiO2 nanocomposites photocatalytic activity. Nanosystems: Phys. Chem. Math., 2018, 9 (2), P. 266–278.
9. Ganguly A., Nath S.S., Gope G., Choudhury M. CdS quantum dot sensitized zinc oxide based solar cell with aluminum counter electrode. Nanosystems: Phys. Chem. Math., 2017, 8 (6), P. 782–786.
10. Rath M.S., Ramakrishna G., Mukherjee T., Ghosh H.N. Electron injection into the surface states of ZrO2 nanoparticles from photoexcited quinizarin and its derivatives: effect of surface modification. J. Phys. Chem. B, 2005, 109, P. 20485–20492.
11. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Phys. Chem. Math., 2013, 4, P. 810–815.
12. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2018, 9 (4), P. 568–572.
13. Kolesnik I.V., Lebedev. V.A., Garshev A.V. Optical Properties and photocatalytic activity of nanocrystalline TiO2 doped by 3d-metal ions. Nanosystems: Phys. Chem. Math., 2018, 9 (3), P. 401–409.
14. Bi D., Moon S.J., et al. Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances, 2013, 3 (41), P. 18762–18766.
15. Shevaleevskiy O.I., Nikolskaia A.B., et al. Nanostructured TiO2 Films with a Mixed Phase for Perovskite Solar Cells. Russ. J. Phys. Chem., 2018, 12 (4), P. 663–669.
16. Almjasheva O.V., Smirnov A.V., et al. Structural features of ZrO2–Y2O3 and ZrO2–Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84 (5), P. 804–809.
17. Tauc J., Grigorovici R.,Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. St. Sol., 1966, 15, P. 627–637.
18. Kim H.-S., Lee C.-R., et al. Lead iodide perovskites all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2, 591.
19. Oum K., Lohse P.W., et al. Photoinduced ultrafast dynamics of the triphenylamine-based organic sensitizer D35 on TiO2, ZrO2 and in acetonitrile. Phys. Chem. Chem. Phys., 2013, 15, P. 3906–3916.
20. Nikolay T., Larina, L., Shevaleevskiy O., Ahn B.T., Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energ. Environ. Sci., 2011, 4, P. 1480–1486.
21. Kozlov S., Nikolskaia A., et al. Rare-earth and Nb doping of TiO2 nanocrystalline mesoscopic layers for high-efficiency dye-sensitized solar cells. Phys. St. Sol. A, 2016, 213, P. 1801–1806.
Review
For citations:
Larina L.L., Alexeeva O.V., Almjasheva O.V., Gusarov V.V., Kozlov S.S., Nikolskaia A.B., Vildanova M.F., Shevaleevskiy O.I. Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(1):70-75. https://doi.org/10.17586/2220-8054-2019-10-1-70-75