Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Monotonicity of the eigenvalues of the two-particle Schrӧdinger operator on a lattice

https://doi.org/10.17586/2220-8054-2021-12-6-657-663

Аннотация

We consider the two-particle Schrodinger operator¨ H(k), (kT3 ≡ (−π,π]3 is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice Z3. It is proved that the number N(k) ≡ N(k(1),k(2),k(3)) of eigenvalues below the essential spectrum of the operator H(k) is nondecreasing function in each k(i) ∈ [0], i = 1,2,3. Under some additional conditions potential vˆ, the monotonicity of each eigenvalue zn(k) ≡ zn(k(1),k(2),k(3)) of the operator H(k) in k(i) ∈ [0] with other coordinates k being fixed is proved.

Об авторах

J. Abdullaev
Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan; Samarkand State University
Узбекистан


A. Khalkhuzhaev
Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan; Samarkand State University
Узбекистан


L. Usmonov
Samarkand State University
Узбекистан


Список литературы

1. Bloch I., Dalibard J., and Nascimbene S. Quantum simulations with ultracold quantum gases, Nature Physics, 2012, 8, P. 267–276.

2. Jaksch D., Zoller P. The cold atom Hubbard toolbox, Annals of Physics, 2005, 315, P. 52-79.

3. Lewenstein M., Sanpera A., Ahufinger V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems, 2012, Oxford University Press.

4. Gullans M., Tiecke T.G., Chang D.E., Feist J., Thompson J.D., Cirac J.I., Zoller P., Lukin M.D. Nanoplasmonic Lattices for Ultracold Atoms, Phys. Rev. Lett., 2012, 109, P. 235309.

5. Hecht E. Optics. Addison-Wesley, Reading, MA, 1998.

6. Murphy B., Hau L.V. Electro-optical nanotraps for neutral atoms, Phys. Rev. Lett., 2009, 102, P. 033003.

7. N.P. de Leon, Lukin M D., and Park H. Quantum plasmonic circuits, IEEE J. Sel. Top. Quantum Electron., 2012, 18, P. 1781–1791.

8. Mattis D.C. The few-body problem on a lattice. Rev. Modern Phys., 1986, 58, P. 361–379.

9. Mogilner A.I. Hamiltonians in solid-state physics as multiparticle discrete Schrodinger operators: Problems and results, in: Many Particle¨ Hamiltonians: Spectra and Scattering (Adv. Soviet Math., Vol. 5, R. A. Minlos, ed.), Amer. Math. Soc., Providence, R.I., 1991, P. 139–194.

10. Graf G.M., Schenker D. 2-magnon scattering in the Heisenberg model, Ann. Inst. H. Poincare’ Phys. The’or., 1997, 67(1), P. 91–107.

11. Muminov M.I., Ghoshal S.K. Spectral features of two-particle Schrodinger operator on d-dimensiional lattice.¨ Complex Analysis and Operator Theory, 2020, 14(1).

12. Lakaev S.N., Khalkhuzhaev A.M. The number of eigenvalues of the two-particle discrete Schrodinger operator.¨ Theor. Math. Phys., 2009, 158(2), P. 221–232.

13. Abdullaev J.I., Lakaev S.N. Asymptotics of the discrete spectrum of the three-particle Schrodinger difference operator on lattice,¨ Theor. Math. Phys., 2003, 136(2), P. 1096–1109.

14. Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I. The threshold effects for the two-particle Hamiltonians on lattices, Commun. Math. Phys., 2006, 262(1), P. 91–115.

15. Lakaev S.N., Khalkhuzhaev A.M. Spectrum of the two-particle Schrodinger Operator on a lattice,¨ Theor. Math. Phys., 2008, 155(2), P. 753– 764.

16. Lakaev S., Kholmatov Sh., Khamidov Sh. Bose-Hubbard models with on-site and nearest-neighbor interactions: Exactly solvable case. J. Phys. A: Math. Theor., 2021, 54, P. 245201(22).

17. Muminov M., Lokman C. Finiteness of discrete spectrum of the two-particle Schrodinger operator on diamond lattices,¨ Nanosystems: physics, chemistry, mathematics, 2017, 8(3), P. 310–316.

18. M. Reed and B. Simon, Methods of modern mathematical physics. IV: Analysis of operators. Academic Press, N.Y., 1979.

19. Pankov A.A. Lecture Notes on Schrodinger equations. Nova Science, New York, 2007.¨

20. Abdullaev Zh.I., Kuliev K.D. Bound States of a two-boson system on a two-dimensional lattice, Theor. Math. Phys., 2016, 186(2), P. 231–250.

21. Abdullaev Zh.I. Bound states of a system of two fermions on a one-dimensional lattice. Theor. and Math. Phys., 2006, 147(1), P. 486–495.


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2021;12(6):657-663. https://doi.org/10.17586/2220-8054-2021-12-6-657-663

For citation:


Abdullaev J.I., Khalkhuzhaev A.M., Usmonov L.S. Monotonicity of the eigenvalues of the two-particle Schrӧdinger operator on a lattice. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):657-663. https://doi.org/10.17586/2220-8054-2021-12-6-657-663

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)