Energy relaxation in molecular systems containing salt ions
https://doi.org/10.17586/2220-8054-2021-12-5-598-602
Аннотация
In this paper, we consider relaxation processes in molecular systems containing single biomolecule and salt ions. The energy fluctuations in such systems were evaluated using computer simulations. The comparative analysis of the free energy dynamics of alanine, tryptophan, and albumin biomolecules in constructed molecular systems (aqueous solutions with different degrees of ionization) resulted in high influence of ionizing impurities on the full energy of the system and on the energy relaxation time. The results obtained can be used for development of hybrid micro and nanoelectronic devices with built-in biomolecular objects, for example, biochemical sensors, devices with microflow of liquids, technology for the preparation of molecular films, etc.
Ключевые слова
Об авторах
M. BaranovРоссия
E. Velichko
Россия
E. Nepomnyashchaya
Россия
I. Pleshakov
Россия
Список литературы
1. Zotti L.A. Molecular Electronics. Applied Sciences, 2021, 11, P. 4828.
2. Wang Y., Harrison C.B., Schulten K., McCammon J.A. Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov., 2011, P. 4.
3. Viloria J.S., Allega M.F., Lambrughi M., Papaleo E. An optimal distance cutoff for contact-based Protein Structure Networks using side-chain centers of mass. Sci. Rep., 2017, 7, P 1–11.
4. Petty M.C., Nagase T., Suzuki H., Naito H. Molecular electronics. Springer Handbooks, 2017, 1.
5. Hasani H.J., Ganesan A., Ahmed M., Barakat K.H. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. PLoS One, 2018, 13.
6. Baranov M., Tsybin O. and Velichko E. Structured biomolecular films for microelectronics. Saint Petersbg. Polytech. State Univ.Journal. Phys. Math., 2021, 14, P. 85–99.
7. Bibi F., Villain M., Guillaume C., Sorli B., Gontard N.A. Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors. Sensors, 2016, 16(8), P. 1232.
8. Taylor P.A., Jayaraman A. Molecular Modeling and Simulations of Peptide-Polymer Conjugates Annu. Rev. Chem. Biomol. Eng., 2020, 11, P. 257–76.
9. Xiao B.L., Ning Y.N., Niu N.N., Li D., Moosavi-Movahedi A.A., Sheibani N., Hong J. Steered molecular dynamic simulations of conformational lock of Cu, Zn-superoxide dismutase. Sci. Rep., 2019, 9, P. 1-11.
10. Tavanti F., Pedone A., Menziani M.C. A closer look into the ubiquitin corona on gold nanoparticles by computational studies. New J. Chem., 2015, 39, P. 2474–82.
11. Tavanti F., Pedone A. and Menziani M. C. Competitive Binding of Proteins to Gold Nanoparticles Disclosed by Molecular Dynamics Simulations J. Phys. Chem. C, 2015, 119, 22172-80
12. Baranov M., Velichko E., Rozov S. Dehydrated films of protein solutions: structural properties. Saint Petersbg. Polytech. State Univ. Journal. Phys. Math- ematics, 2019, 12, P. 25–37.
13. Dyubo D., Tsybin O.Y., Baranov M.A., Alekseenko A.P., Velichko E.N. Study of electric properties of self-assembled films of albumin during their dehydration Recent citations Study of electric properties of self-assembled films of albumin during their dehydration. J. Phys, 2018, 1124, P. 31013.
14. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kal´e L., Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26, P. 1781–802.
15. Sanchez C., Galo G.J., Ribot F. and Grosso D. Design of functional nano-structured materials through the use of controlled hybrid organicinorganic interfaces. Comptes Rendus Chim., 2003, 6, P. 1131-51.
Рецензия
Для цитирования:
, , , . Наносистемы: физика, химия, математика. 2021;12(5):598-602. https://doi.org/10.17586/2220-8054-2021-12-5-598-602
For citation:
Baranov M.A., Velichko E.N., Nepomnyashchaya E.K., Pleshakov I.V. Energy relaxation in molecular systems containing salt ions. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(5):598-602. https://doi.org/10.17586/2220-8054-2021-12-5-598-602