Structural and energetic analysis of cyclic peptide-gold nano-drug delivery system: a DFT study
https://doi.org/10.17586/2220-8054-2021-12-5-612-622
Abstract
By applying cyclooctaglycine model for cyclic peptide (CP) and cluster Au6 model for gold nanoparticles (GN), seven different configurations of cyclic peptide-gold nanoparticles (CPGN) with 5-fluorouracil (FU) were investigated. Binding energies, quantum molecular descriptors, and solvation energies in the aqueous solution and gas phase were studied at the density functional level of M06-2X/6-31g(d, p). Solvation energies indicate that the solubility of FU increases in CPGN/FU1-7. This subject is considered a key factor for drug transfer, so CPGNs can be used as an appropriate drug delivery system. The large negative values of calculated binding energies show the stability of CPGN/FU1-7 structures, and quantum molecular descriptors, such as electrophilicity (ω) and global hardness (η) indicate that the reactivity of FU in CPGN/FU1-7 structures increases. AIM calculations for all structures also show that intermolecular hydrogen bonding and Au-drug interactions play an important role for this drug delivery system.
About the Authors
B. KhoshbayanIslamic Republic of Iran
Mashhad
A. Morsali
Islamic Republic of Iran
Mashhad
M. R. Bozorgmehr
Islamic Republic of Iran
Mashhad
S. A. Beyramabad
Islamic Republic of Iran
Mashhad
References
1. Girase M.L., Patil P.G., Ige P.P., Biomaterials P. Polymer-drug conjugates as nanomedicine: a review. Int. J. Polymer. Mater., 2020, 69, P. 990–1014.
2. Rahbar M., Morsali A., Bozorgmehr M.R., Beyrmabadi S.A. Quantum chemical studies of chitosan nanoparticles as effective drug delivery systems for 5-fluorouracil anticancer drug. J. Mol. Liq., 2020, 302, 112495.
3. Lotfi M., Morsali A., Bozorgmehr M.R. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl. Surf. Sci., 2018, 462, P. 720–729.
4. Samal S.K. Cancer and Carbon Nano Tubes: A Promising Hope of Future. Scientific Review, 2018, 4, P. 64–67.
5. Connor D.M., Broome A.-M. Gold Nanoparticles for the Delivery of Cancer Therapeutics. Adv. Cancer Res., 2018, 139, P. 163–184.
6. Roohi R., Emdad H., Jafarpur K. A comprehensive study and optimization of magnetic nanoparticle drug delivery to cancerous tissues via external magnetic field. J. Test. Eval., 2019, 47, P. 681–703.
7. Shabani Z., Morsali A., Bozorgmehr M.R., Beyramabadi S.A. Quantum chemical modeling of iron oxide magnetic nanoparticles functionalized with cytarabine. Chem. Phys. Lett., 2019, 719, P. 12–21.
8. Foglia L.M., Alvarez S.G., et al. Recent patents on the synthesis and application of silica nanoparticles for drug delivery. Recent Pat. Biotechnol., 2011, 5, P. 54–61.
9. Singh R.K., Kim H.W. Inorganic nanobiomaterial drug carriers for medicine. Tissue Eng. Regen. Med., 2013, 10, P. 296–309.
10. Ostroushko A.A., Gagarin I.y.D., Danilova I.G., Gette I.F. The use of nanocluster polyoxometalates in the bioactive substance delivery systems. Nanosystems: Phys. Chem. Math., 2019, 10, P. 318–349.
11. Popova N., Popov A., Shcherbakov A., Ivanov V. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-based theranostic agents. Nanosystems: Phys. Chem. Math., 2017, 8, P. 282–289.
12. Fan M., Han Y., et al. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics, 2020, 10, 4944.
13. Haume K., Rosa S., et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol., 2016, 7, P. 8–28.
14. Xu Y., He R., et al. Laser beam controlled drug release from Ce6-gold nanorod composites in living cells: a FLIM study. Nanoscale, 2015, 7, P. 2433–2441.
15. Khutale G.V., Casey A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm., 2017, 119, P. 372–380.
16. Fernandez-Lopez S., Kim H.-S., et al. Antibacterial agents based on the cyclic D, L-α-peptide architecture. Nature, 2001, 412, 452.
17. Larnaudie S.C., Brendel J.C., et al. Cyclic Peptide-Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes. Biomacromolecules, 2018, 19, P. 239–247.
18. Ellison A.J., Tanrikulu I.C., Dones J.M., Raines R.T. Cyclic Peptide Mimetic of Damaged Collagen. Biomacromolecules, 2020, 21, P. 1539– 1547.
19. Shahabi M., Raissi H. Assessment of solvent effects on the inclusion behavior of pyrazinamide drug into cyclic peptide based nanotubes as novel drug delivery vehicles. J. Mol. Liq., 2018, 268, P. 326–334.
20. Nasrolahi Shirazi A., Tiwari R.K., et al. Cyclic peptide-selenium nanoparticles as drug transporters. Mol. Pharm., 2014, 11, P. 3631–3641.
21. Chermahini A.N., Farrokhpour H., Shahangi F., Dabbagh H.A. Cyclic peptide nanocapsule as ion carrier for halides: a theoretical survey. Struct. Chem., 2018, 29, P. 1351–1357.
22. Dartois V., Sanchez-Quesada J., et al. Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob. Agents Chemother., 2005, 49, P. 3302–3310.
23. Khalfa A., Tarek M. On the antibacterial action of cyclic peptides: insights from coarse-grained MD simulations. J. Phys. Chem. B, 2010, 114, P. 2676–2684.
24. Claro B., Bastos M., Garcia-Fandino R. Design and applications of cyclic peptides. In Peptide Applications in Biomedicine, Biotechnology and Bioengineering, 2018, Elsevier, P. 87–129.
25. Zorzi A., Deyle K., Heinis C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol., 2017, 38, P. 24–29.
26. Park S.E., Sajid M.I., Parang K., Tiwari R.K.M.p. Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools. Mol. Pharm., 2019, 16, P. 3727–3743.
27. Oh D., Nasrolahi Shirazi A., et al. Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization. Mol. Pharm., 2014, 11, P. 2845–2854.
28. Mandal D., Nasrolahi Shirazi A., Parang K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew. Chem. Int. Ed., 2011, 50, P. 9633–9637.
29. Jing X., Jin K.J.M.R.R. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med. Res. Rev., 2020, 40, P. 753–810.
30. Dougherty P.G., Sahni A., Pei D. Understanding cell penetration of cyclic peptides. Chem. Rev., 2019, 119, P. 10241–10287.
31. Nasrolahi Shirazi A., Tiwari R.K., et al. Surface decorated gold nanoparticles by linear and cyclic peptides as molecular transporters. Mol. Pharm., 2013, 10, P. 3137–3151.
32. Naghavi F., Morsali A., Bozorgmehr M.R., Beyramabadi S.A. Quantum molecular study of mesoporous silica nanoparticle as a delivery system for troxacitabine anticancer drug. J. Mol. Liq., 2020, 310, 113155.
33. Nasrabadi M., Morsali A., Beyramabadi S.A. An applied quantum-chemical model for genipin-crosslinked chitosan (GCS) nanocarrier. Int. J. Biol. Macromol., 2020, 165, P. 1229–1240.
34. Bokarev A., Plastun I. Possibility of drug delivery due to hydrogen bonds formation in nanodiamonds and doxorubicin: molecular modeling. Nanosystems: Phys. Chem. Math., 2018, 9, P. 370–377.
35. Nasrabadi M., Beyramabadi S.A., Morsali A. Surface functionalization of chitosan with 5-nitroisatin. Int. J. Biol. Macromol., 2020, 147, P. 534–536.
36. Naghavi F., Morsali A., Bozorgmehr M.R. Molecular mechanism study of surface functionalization of silica nanoparticle as an anticancer drug nanocarrier in aqueous solution. J. Mol. Liq., 2019, 282, P. 392–400.
37. Hadi L., Ali M., Momen H.M. The prediction of COOH functionalized carbon nanotube application in melphalan drug delivery. Nanosystems: Phys. Chem. Math., 2019, 10, P. 438–446.
38. Sara J.D., Kaur J., et al. 5-fluorouracil and cardiotoxicity: a review. Ther. Adv. Med. Oncol., 2018, 10, 1758835918780140.
39. Longley D.B., Harkin D.P., Johnston P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3, P. 330–338.
40. Metterle L., Nelson C., Patel N. Intralesional 5-fluorouracil (FU) as a treatment for nonmelanoma skin cancer (NMSC): a review. J. Am. Acad. Dermatol., 2016, 74, P. 552–557.
41. Lee J.J., Beumer J.H., Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother. Pharmacol., 2016, 78, P. 447–464.
42. Chen L., Yu H., et al. Fabrication of a microporous Dy (III)-organic framework with polar channels for 5-Fu (fluorouracil) delivery and inhibiting human brain tumor cells. Struct. Chem., 2018, 29, P. 1885–1891.
43. Frisch M., Trucks G., et al. G09 Gaussian Inc. Gaussian 09, revision B.01. Gaussian, Inc., Wallingford, CT, 2009.
44. Parr R.G., Szentpaly L.v., Liu S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, P. 1922–1924.
45. AIMAll TK Gristmill Software. Overland Park KS, USA, 2016, URL: aim.tkgristmill.com.
46. Poteau R., Trinquier G. All-cis cyclic peptides. J. Am. Chem. Soc., 2005, 127, P. 13875–13889.
47. Manzoor D., Pal S., Krishnamurty S. Influence of charge and ligand on the finite temperature behavior of gold clusters: a BOMD study on Au6 cluster. J. Phys. Chem. C, 2013, 117, P. 20982–20990.
48. Fagan J.W., Weerawardene K.D.M., et al. Toward quantitative electronic structure in small gold nanoclusters. J. Chem. Phys., 2021, 155, 014301.
49. Shi H.X., Sun W.G., et al. Probing the Interactions of O2 with Small Gold Cluster AunQ (n = 2–10, Q= 0–1): A Neutral Chemisorbed Complex Au5O2 Cluster Predicted. J. Phys. Chem. C, 2017, 121, P. 24886–24893.
50. Ligare M.R., Morrison K.A., et al. Ion Mobility Spectrometry Characterization of the Intermediate Hydrogen-Containing Gold Cluster Au7(PPh3)7H2+5. J. Phys. Chem. Lett., 2021, 12, P. 2502–2508.
51. Lang S.M., Bernhardt T.M., et al. Selective C-H bond cleavage in methane by small gold clusters. Angew. Chem. Int. Ed. Engl., 2017, 129, P. 13591–13595.
52. Gilb S., Weis P., et al. Structures of small gold cluster cations (Au+n, n < 14): Ion mobility measurements versus density functional calculations. J. Chem. Phys., 2002, 116, P. 4094–4101.
53. Lechtken A., Neiss C., Kappes M.M., Schooss D. Structure determination of gold clusters by trapped ion electron diffraction: Au14–Au−19. Phys. Chem. Chem. Phys., 2009, 11, P. 4344–4350.
54. Rozas I., Alkorta I., Elguero J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc., 2000, 122, P. 11154–11161.
55. Espinosa E., Souhassou M., Lachekar H., Lecomte C. Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr. Sect. B: Struct. Sci., 1999, 55, P. 563–572.
56. Espinosa E., Alkorta I., Elguero J., Molins E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H F-Y systems. J. Chem. Phys., 2002, 117, P. 5529–5542.
Review
For citations:
Khoshbayan B., Morsali A., Bozorgmehr M.R., Beyramabad S.A. Structural and energetic analysis of cyclic peptide-gold nano-drug delivery system: a DFT study. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(5):612-622. https://doi.org/10.17586/2220-8054-2021-12-5-612-622