The influence of edge specific surface energy on the direction of hydrosilicate layers scrolling
https://doi.org/10.17586/2220-8054-2021-12-5-623-629
Abstract
The present study reports on energy modeling of morphological features of hydrosilicate nanoscrolls with chrysotile structure. It considers a possibility of scrolling direction change driven by difference in specific surface energies on the hydrosilicate layer edges. Specific surface energy estimation together with energy modeling of the scrolling process reveal several directions, which are preferable in comparison to the [010] or [100] directions of scrolling. The results obtained may help to better understand correlation between morphology, structural features, and mechanical behavior of hydrosilicate nanoscrolls.
About the Author
A. A. KrasilinRussian Federation
Politekhnicheskaya 26, St.-Petersburg, 194021
References
1. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Cation doping approach for nanotubular hydrosilicates curvature control and related applications. Crystals, 2020, 10 (8), 654.
2. Shafia E., Esposito S., et al. Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). J. Nanopart. Res., 2015, 17 (8), 336.
3. Zsirka B., T´aborosi A., et al. Surface characterization of mechanochemically modified exfoliated halloysite nanoscrolls. Langmuir, 2017, 33 (14), P. 3534–3547.
4. Lesci I.G., Balducci G., et al. Surface features and thermal stability of mesoporous Fe doped geoinspired synthetic chrysotile nanotubes. Micropor. Mesopor. Mat., 2014, 197, P. 8–16.
5. Krasilin A.A., Danilovich D.P., et al. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Appl. Clay Sci., 2019, 173, P. 1–11.
6. Guimar~aes L., Enyashin A.N., et al. Imogolite nanotubes: stability, electronic, and mechanical properties. ACS Nano, 2007, 1 (4), P. 362–368.
7. Guimar~aes L., Enyashin A.N., Seifert G., Duarte H.A. Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J. Phys. Chem. C, 2010, 114 (26), P. 11358–11363.
8. Lecouvet B., Horion J., et al. Elastic modulus of halloysite nanotubes. Nanotechnology, 2013, 24 (10), 105704.
9. Kumzerov Y.A., Parfen’eva L.S., et al. Thermal and acoustic properties of chrysotile asbestos. Phys. Solid State, 2005, 47 (2), P. 370–373.
10. Piperno S., Kaplan-Ashiri I., et al. Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy. Adv. Funct. Mater., 2007, 17 (16), P. 3332–3338.
11. Khalisov M.M., Lebedev V.A., et al. Young’s modulus of phyllosilicate nanoscrolls measured by the AFM and by the in-situ TEM indentation. Nanosystems: Phys. Chem. Math., 2021, 12 (1), P. 118–127.
12. Lisuzzo L., Cavallaro G., et al. Colloidal stability of halloysite clay nanotubes. Ceram. Int., 2019, 45 (2), P. 2858–2865.
13. Bonelli B., Bottero I., et al. IR spectroscopic and catalytic characterization of the acidity of imogolite-based systems. J. Catal., 2009, 264 (1), P. 15–30.
14. Mahajan A., Gupta P. Halloysite nanotubes based heterogeneous solid acid catalysts. New J. Chem., 2020, 44 (30), P. 12897–12908.
15. Bian Z., Kawi S. Preparation, characterization and catalytic application of phyllosilicate: A review. Catal. Today, 2020, 339, P. 3–23.
16. Khrapova E.K., Ugolkov V.L., et al. Thermal behavior of Mg–Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation. ChemNanoMat, 2021, 7 (3), P. 257–269.
17. Monet G., Paineau E., et al. Solid wetting-layers in inorganic nano-reactors: the water in imogolite nanotube case. Nanoscale Adv., 2020, 2 (5), P. 1869–1877.
18. Pigni´e M.-C., Shcherbakov V., et al. Confined water radiolysis in aluminosilicate nanotubes: the importance of charge separation effects. Nanoscale, 2021, 13 (5), P. 3092–3105.
19. Lvov Y., Wang W., Zhang L., Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater., 2016, 28 (6), P. 1227–1250.
20. Cavallaro G., Milioto S., Lazzara G. Halloysite nanotubes: interfacial properties and applications in cultural heritage. Langmuir, 2020, 36 (14), P. 3677–3689.
21. Maslennikova T.P., Korytkova E.N. Aqueous solutions of cesium salts and cesium hydroxide in hydrosilicate nanotubes of the Mg3Si2O5(OH)4 composition. Glass Phys. Chem., 2010, 36 (3), P. 345–350.
22. Kononova S.V., Korytkova E.N., et al. Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russ. J. Gen. Chem., 2010, 80 (6), P. 1136–1142.
23. Lvov Y., Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci., 2013, 38 (10–11), P. 1690–1719.
24. Khrapova E.K., Ezhov I.S., et al. Nanotubular nickel hydrosilicate and its thermal annealing products as anode materials for lithium ion batteries. Inorg. Mater., 2020, 56 (12), P. 1248–1257,
25. Yada K. Study of microstructure of chrysotile asbestos by high-resolution electron microscopy. Acta Crystallogr. A, 1971, 27 (6), P. 659–664.
26. Wicks F.J., Whittaker E.J.W. A reappraisal of the structures of the serpentine minerals. Can. Mineral., 1975, 13 (3), P. 227–243.
27. Falini G., Foresti E., et al. Tubular-shaped stoichiometric chrysotile nanocrystals. Chem. Eur. J., 2004, 10 (12), P. 3043–3049.
28. Drits V.A., Sakharov B.A., Hillier S. Phase and structural features of tubular halloysite (7 ˚A). Clay Miner., 2018, 53 (4), P. 691–720.
29. Niu J., Qiang Y., et al. Morphology and orientation of curling of kaolinite layer in hydrate. Appl. Clay Sci., 2014, 101, P. 215–222.
30. Khalitov Z., Khadiev A., Pashin D. Electron diffraction patterns from scroll nanotubes: interpretation peculiarities. J. Appl. Crystallogr., 2015, 48 (1), P. 29–36.
31. Mak´o ´E., D´odony I., et al. Nanoscale structural and morphological features of kaolinite nanoscrolls. Appl. Clay Sci., 2020, 198, 105800.
32. Korytkova E.N., Maslov A.V., et al. Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Phys. Chem., 2004, 30 (1), P. 51–55.
33. Krasilin A.A., Suprun A.M., Nevedomsky V.N., Gusarov V.V. Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls. Dokl. Phys. Chem., 2015, 460 (2), P. 42–44.
34. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Phys. Chem. Math., 2017, 8 (5), P. 620–627.
35. Bloise A., Barrese E., Apollaro C. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neues Jb. Miner. Abh., 2009, 185 (3), P. 297–304.
36. Bloise A., Belluso E., et al. Hydrothermal alteration of glass to chrysotile. J. Am. Ceram. Soc., 2012, 95 (10), P. 3050–3055.
37. Singh B. Why does halloysite roll? – A new model. Clay. Clay Miner., 1996, 44 (2), P. 191–196.
38. Perbost R., Amouric M., Olives J. Influence of cation size on the curvature of serpentine minerals: HRTEM-AEM study and elastic theory. Clay. Clay Miner., 2003, 51 (4), P. 430–438.
39. Chivilikhin S.A., Popov I.Y., Gusarov V.V. Dynamics of nanotube twisting in a viscous fluid. Dokl. Phys., 2007, 52 (1), P. 60–62.
40. Thill A., Guiose B., et al. How the diameter and structure of (OH)3Al2O3SixGe1−xOH imogolite nanotubes are controlled by an adhesion versus curvature competition. J. Phys. Chem. C, 2012, 116 (51), P. 26841–26849.
41. Krasilin A.A., Nevedomsky V.N., Gusarov V.V. Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. J. Phys. Chem. C, 2017, 121 (22), P. 12495–12502.
42. Krasilin A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clay. Clay Miner., 2020, 68 (5), P. 436–445.
43. Landau L.D., Pitaevskii L.P., Kosevich A.M., Lifshitz E.M. Theory of Elasticity, Third Edition: Volume 7 (Course of Theoretical Physics), Butterworth-Heinemann, Oxford, 1986, 195 p.
44. Lourenc¸o M.P., de Oliveira C., et al. Structural, electronic, and mechanical properties of single-walled chrysotile nanotube models. J. Phys. Chem. C, 2012, 116 (17), P. 9405–9411.
45. Cressey B.A., Whittaker E.J.W. Five-fold symmetry in chrysotile asbestos revealed by transmission electron microscopy. Mineral. Mag., 1993, 57 (389), P. 729–732.
46. Demichelis R., De La Pierre M., et al. Serpentine polymorphism: a quantitative insight from first-principles calculations. CrystEngComm, 2016, 18 (23), P. 4412–4419.
47. Churakov S.V., Iannuzzi M., Parrinello M. Ab initio study of dehydroxylation?carbonation reaction on brucite surface. J. Phys. Chem. B, 2004, 108 (31), P. 11567–11574.
48. Shchipalov Y.K. Surface energy of crystalline and vitreous silica. Glass Ceram., 2000, 57 (11–12), P. 374–377.
49. Cotton D.H., Jenkins D.R. Bond-dissociation energy of gaseous magnesium oxide. T. Faraday Soc., 1969, 65, P. 376–379.
50. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 2011, 44 (6), P. 1272–1276.
51. Parfitt R.L. Allophane and imogolite: role in soil biogeochemical processes. Clay Miner., 2009, 44 (1), P. 135–155.
52. Du P., Yuan P., et al. Insights into the formation mechanism of imogolite from a full-range observation of its sol-gel growth. Appl. Clay Sci., 2017, 150, P. 115–124.
53. Thill A., Picot P., Belloni L. A mechanism for the sphere/tube shape transition of nanoparticles with an imogolite local structure (imogolite and allophane). Appl. Clay Sci., 2017, 141, P. 308–315.
54. Khadiev A., Khalitov Z. Quantitative theory of diffraction by cylindrical scroll nanotubes. Acta Crystallogr. A, 2018, 74 (3), P. 233–244.
Review
For citations:
Krasilin A.A. The influence of edge specific surface energy on the direction of hydrosilicate layers scrolling. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(5):623-629. https://doi.org/10.17586/2220-8054-2021-12-5-623-629