Tunable multiferroic properties of cerium doped bismuth ferrite
https://doi.org/10.17586/2220-8054-2019-10-3-255-265
Abstract
Multiferroic Bi1−xCexFeO3 (x = 0.05, 0.1, 0.15, 0.2) nanoparticles were prepared using an auto-combustion method. The effect of cerium substitution on the crystal structure, electrical and magnetic properties of BiFeO3 (Bismuth Ferrite) was studied. X-raydiffraction spectra revealed that Ce substitution increases the lattice parameters. The average particle size estimated from TEM images is less than 50 nanometers. According to the magnetic hysteresis loops, it was found that the enhanced magnetization which results from increasing Ce concentration is attributed to the nanoparticle size and enhanced ferroelectric polarization. The magnetization and ferroelectric polarization were found to exhibit an exotic mutual relationship. The samples were found to exhibit relaxation of dielectric polarization. This rare combination of Ce doped BiFeO3 by auto-combustion method has not been reported before.
About the Authors
R. PatelIndia
Wardha
P. Sawadh
India
Wardha
References
1. M. Fiebig, T. Lottermoser, et al. Observation of coupled magnetic and electric domains. Nature (London), 2002, 419, P. 818–820.
2. J. Wang, J.B. Neaton, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299, P. 1719–1722.
3. Rajasree Das, Gobinda Gopal Khan, Kalyan Mandal. Enhanced ferroelectric, magnetoelectric, and magnetic properties in Pr and Cr co-doped BiFeO3 nanotubes fabricated by template assisted route. J. Appl. Phys., 2012, 111, P. 104115 (1–6).
4. Nguyen Van Minh, Nguyen Gia Quan. Structural, optical and electromagnetic properties of Bi1xHoxFeO3 multiferroic materials. J. Alloys Compd., 2011, 509, P. 2663–2666.
5. Deepti Kothari, V. Raghavendra Reddy, et al. Eu doping in multiferroic BiFeO3 ceramics studied by Mossbauer and EXAFS spectroscopy. J. Phys.: Condens. Matter, 2010, 22, P. 356001.
6. Sosnowska I., Loewenhaupt M., David W.I.F., Ibberson R.M. Investigation of the unusual magnetic spiral arrangement in BiFeO3. Physica B: Condensed Matter, 1992, 180–181, P. 117–118.
7. Dho J., Qi X., et al. Large Electric Polarization and Exchange Bias in Multiferroic BiFeO3. ADV. Mater, 2006, 18, P.1445–1448.
8. Xiaoding Qi, Joonghoe Dho, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett., 2005, 86, P. 062903.
9. Can Wang, Mitsue Takahashi, et al. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3(Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. Journal of Applied Physics, 2006, 99, P. 054104.
10. Xiao X.H., Zhu J., et al. Greatly reduced leakage current in BiFeO3 thin film by oxygen ion implantation. Journal of Physics D: Applied Physics, 2007, 40, P. 18.
11. Chen Y.B., Katz M.B., Pan, Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films. Appl. Phys. Lett., 2007, 90, P. 072907.
12. Samar Layek, Soumen Kumar Bag, Verma H.C. Preparation And Studies On (1 − X)BiFeO3−XLi0.5Fe2.5O4 (X = 0.25 and 0.5) Multiferroic Nano-Composites. ’ICNANO 2011’, 2013, 4, P. 26–30.
13. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (5), P. 696–705.
14. Mao J., Cao L., et al. Experimental and first principles investigation of Bi1−xCexFeO3: Structure, electronic and optical properties. Journal of Alloys and Compound, 2017, 721, P. 638–645.
15. El-Lateef H., Khalaf M., Ibrahim E.M.M. Magnetic and DC electric properties of solgel synthesized Ce-doped BiFeO3 nanoflakes. Applied Physics A, 2017, 123, P. 533.
16. Patil K.C., Hegde M.S., Rattan T., Aruna S.T. Chemistry of nanocrystalline oxide materials – combustion synthesis: Properties and Applications, World Scientific, (2008).
17. Gurmeet Singh Lotey, Verma N.K. Multiferroism in rare earth metals-doped BiFeO3 nanowires. Superlattices and Microstructures, 2013, 60, P. 60–66.
18. Yao Y.B., Liuc W.C., Mak C.L. Pyroelectric properties and electrical conductivity in samarium doped BiFeO3 ceramics. Journal of Alloys and Compounds, 2012, 527, P. 157–162.
19. Kumar M., Yadav K.L. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization. Appl. Phys. Lett., 2007, 91, P. 242901.
20. Ueda K., Tabata H., Kawai T. Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature. Appl. Phys. Lett., 1999, 75, P. 555.
21. Mahesh Kumar M., Srinivas A., Suryanarayan. Structure property relations in BiFeO3/BaTiO3 solid solutions. Journal of Applied Physics, 2000, 87, P. 855–862.
22. Sosnowska I., Peterlin-Neumaier T., Steichele E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys., 1982, 15, P. 4835– 4846.
23. Przeniosto R., Palewicz A., et al. Does the modulated magnetic structure of BiFeO3 change at low temperatures? J. Phys.: Condens. Matter, 2006, 18, P. 2069–2075.
24. Yuan G.L., Or S.W., Chan H.L.W. Structural transformation and ferroelectricparaelectric phase transition in Bi1xLaxFeO3 (x =0-0.25) multiferroic ceramics. J. Phys. D: Appl. Phys., 2007, 40, P. 1196–1200.
25. Yuan G.L., Or S.W. Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1xNdxFeO3 (x =0-0.15) ceramics. Appl. Phys. Lett., 2006, 88, P. 062905.
26. Khomchenko V.A., Kiselev D.A., et al. Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. Journal of Applied Physics, 2008, 103, P. 024105.
27. Fujino S., Murakami M., et al. Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett., 2008, 92, P. 202904.
28. Yan Z., Wang K.F., et al. Processing and properties of Yb-doped BiFeO3 ceramics. Appl. Phys. Lett., 2007, 91, P. 082906.
29. Mishra R.K., Pradhan D.K., Choudhary R.N.P., Baneriee A. Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J. Phys.: Condens. Matter, 2008, 20, P. 045218(1–6).
30. Khomchenko V.A., Kiselev D.A., et al. Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca,Sr,Pb) ceramics. Appl. Phys. Lett., 2007, 90, P. 242901.
31. Khomchenko V.A., Kiselev D.A., et al. Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. Journal of Applied Physics, 2008, 103, P. 024105.
32. Schaffer J.P., Saxena A., et al. The Science and Design of Engineering Materials, McGrawHill, New York, 1999.
33. Lotey G.S., Verma N.K. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. Journal of Nanoparticle Research, 2012, 14 (3), P. 742.
34. Lotey G.S., Verma N.K. Phase-dependent multiferroism in Dy-doped BiFeO3 nanowires. Superlattices and Microstructures, 2013, 53, P. 184– 194.
35. Lotey G.S., Verma N.K. Multiferroic properties of Tb-doped BiFeO3 nanowires. Journal of nanoparticle research, 2013, 15 (4), P. 1553.
36. Das R., Khan G.G., Mandal K. Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material. EPJ Web of Conferences, 2013, 40, P. 15015.
37. Wang J., Li M., et al. Synthesis and ferroelectric properties of Nd doped multiferroic BiFeO3 nanotubes. Chin. Sci. Bull., 2010, 55, P. 1594– 1597.
38. Prakash A.S., Khadar A.M.A., Patil K.C. Hegde M.S. Hexamethylenetetramine: A New Fuel for Solution Combustion Synthesis of Complex Metal Oxides. J. Mater. Synth. Process, 2002, 10, P. 135–141.
39. Jain S.R., Adiga K.C., Pai Verneker V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame, 1981, 40, P. 71–79.
40. Patil K.C. Advanced ceramics: Combustion synthesis and properties. Bull. Mater. Sci., 1993, 16, P. 533–541.
41. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. R. D. Acta Cryst. A, 1976, 32, P. 751.
42. Zhang Xingquan, Sui Yu, et al. Influence of diamagnetic Pb doping on the crystal structure and multiferroic properties of the BiFeO3 perovskite. Journal of Applied Physics, 2009, 105, P. 07D918.
43. Kaczmarek W., Pajak Z., Polomska M. Differential thermal analysis of phase transitions in Bi1xLaxFeO3 solid solution. Solid State Commun., 1975, 17, P. 807–810.
44. Ishidate T., Abe S. Phase Diagram of BaTiO3. Physical Review Letters, 1997, 78, P. 2397–2400.
45. Sahu J.R., Rao C.N. Beneficial modification of the properties of multiferroic BiFeO3 by cation substitution. Solid State Sciences, 2007, 9, P. 950–954.
46. Neel L. Superparamagnetisme des Grains Tres Fins Antiferromagnetiques. ` C. R. Hebd. Sean. Acad. Sci., 1961, 252, P. 4075–4080.
47. Neel L. Proprietes Magnetiques des Grains Fins Antiferromagnetiques: Superparamagnetisme et Superantiferromagnetisme. ` J. Phys. Soc. Jpn., 1962, 17, P. 676–689.
48. Neel L. Antiferromagnetic Hysteresis. In Selected Works of Louis N ` eel. Edited by N. Kurti. Gordon and Breach, New York, 1988, P. 467–488. `
49. Dzyaloshinskii I.E. Thermodynamic Theory of Weak Ferromagnetism in Antiferromagnetic Substances. Sov. Phys. JETP, 1957, 5, P. 1259– 1272.
50. Moriya T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev., 1960, 120 (1), P. 91–98.
51. Wang J., Neaton J.B., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299, P. 1719–1722.
52. Mudinepalli V.R., Feng L., WenChin L.I.N., Murty B.S. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 Ceramics. Journal of Advanced Ceramics, 2015, 4 (1), P. 46–53.
53. Chaudhari Y.A., Mahajan C.M., Jagtap P., Bendre S.T. Structural, Magnetic and Dielectric Properties of Nano-Crystalline Ni-Doped BiFeO3 Ceramics Formulated by Self Propagating High Temperature Synthesis. Journal of Advanced Ceramics, 2013,2, P. 135.
54. Kumar M., Yadav K.I, Study of Dielectric, Magnetic, Ferroelectric and Magnetoelectric Properties in the PbMnxTi1−xO3 system at Room Temperature. Journal of Physics:Condensed Matter, 2007, 19, P. 242202.
55. Uniyal P., Yadav K.I. Room Temperature Multiferroic Properties of Eu doped BiFeO3. Journal of Applied Physics, 2009, 105, P. 07D914.
56. Singh H., Yadav K.L. Effect of Nb Substitution on the Structural, Dielectric and Magnetic Properties of Multiferroic BiFe1−xNbxO3 ceramics. Materials Chemistry and Physics, 2012, 17, P. 132.
57. Chaudhari Y.A., Singh A., et al. Multiferroic Properties in BiFe1−xZnxO3 (x =0.1–0.2) Ceramics by solution combustion Method (SCM). Journal of Alloys and compounds, 2008, 518, P. 51.
58. Tripathy S.N., Pradhan D.K., et al. Phase Transition and Enhanced Magneto-Dielectric Response in BiFeO3–DyMnO3 Multiferroics. Journal of Applied Physics, 2015, 117, Article ID: 144103.
59. Jo S.H., Lee S.G., Lee S.H. Structural and pyroelectric properties of solgel derived multiferroic BFO thin films. Material Research Bulletin, 2012, 47 (2), P. 409–412.
60. Makhdoom A.R., Akhtar M.J., Rafiq M.A., Hassan M.M. Investigation of transport behavior in Ba doped BiFeO3. Ceramics International, 2012, 38, P. 3829–3834.
Review
For citations:
Patel R., Sawadh P. Tunable multiferroic properties of cerium doped bismuth ferrite. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(3):255-265. (In Russ.) https://doi.org/10.17586/2220-8054-2019-10-3-255-265