Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Resonant dielectric waveguide-based nanostructure for efficient interaction with color centers in nanodiamonds

https://doi.org/10.17586/2220-8054-2019-10-3-266-272

Аннотация

Diamond nanoparticles containing single color centers are considered to be one of the most promising realizations of the sources of single photons required for many potential applications in quantum telecommunication and quantum computing systems. Their implementation in practical schemes, however, requires a sufficient increase in their brightness, including the enhancement of both emission and collection efficiency. In this work, we propose a design of a compact planar structure composed of a dielectric periodic cavity coupled with a strip waveguide that is particularly suitable for improving optical characteristics of color centers embedded in a nanodiamond placed inside the structure. We numerically demonstrate that such scheme permits the achievement of simultaneous increase of emission rate of color centers by ≈ 50 times in a spectral range ≈ 2 nm, and up to ≈ 85 % out-coupling efficiency of emission to the dielectric strip waveguides. We analyze the main factors that decrease the performance of the proposed arrangement and discuss the possible ways for restoring it.

Об авторах

O. Sergaeva
ITMO University
Россия


I. Volkov
ITMO University
Россия


R. Savelev
ITMO University
Россия


Список литературы

1. Aharonovich I., Castelletto S., Simpson D.A., Su C.-H., Greentree A.D., Prawer S. Diamond-based single-photon emitters. Reports on Progress in Physics, 2011, 74, P. 076501.

2. Aharonovich I., Englund D., Toth M. Solid-state single-photon emitters. Nature Photonics, 2016, 10, P. 631–641.

3. Schirhagl R., Chang K., Loretz M., Degen C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annual Review of Physical Chemistry, 2014, 65, P. 83–105.

4. Maze J.R., Stanwix P.L., Hodges J.S., Hong S., Taylor J.M., Cappellaro P., Jiang L., Gurudev Dutt M.V., Togan E., Zibrov A.S., et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455, P. 644–647.

5. Hong S., Grinolds M.S., Pham L.M., Le Sage D., Luan L., Walsworth R.L., Yacoby A. Nanoscale magnetometry with NV centers in diamond. MRS Bulletin, 2013, 38, P. 155-161.

6. Kucsko G., Maurer P., Yao N.Y., Kubo M., Noh H., Lo P., Park H., Lukin M.D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, P. 54–58.

7. Toyli D.M., de las Casas C.F., Christle D.J., Dobrovitski V.V., Awschalom D.D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proceedings of the National Academy of Sciences, 2013, 110, P. 8417–8421.

8. Neu E., Hepp C., Hauschild M., Gsell S., Fischer M. Sternschulte H., Steinmuller-Nethl D., Schreck M., Becher C. Low-temperature investi- ¨ gations of single silicon vacancy colour centres in diamond. New Journal of Physics, 2013, 5, P. 043005.

9. Aharonovich I., Greentree A.D., Prawer S. Diamond photonics. Nature Photonics, 2011, 5, P. 397–405.

10. Pelton M. Modified spontaneous emission in nanophotonic structures. Nature Photonics, 2015, 9, P. 427.

11. Schietinger S., Barth M., Aichele T., Benson O. Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal-Diamond Hybrid Structure at Room Temperature. Nano Letters, 2009, 9, P. 1694–1698.

12. Andersen S.K., Kumar S., Bozhevolnyi S.I. Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna. Nano Letters, 2017, 17, P. 3889–3895.

13. Siampour H., Kumar S., Davydov V.A., Kulikova L.F., Agafonov V.N., Bozhevolnyi S.I. On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light: Science & Applications, 2018, 7, P. 397–405.

14. Bayn I., Meyler B., Lahav A. Salzman J., Kalish R., Fairchild B.A., Prawer S., Barth M., Benson O., Wolf T., et al. Processing of photonic crystal nanocavity for quantum information in diamond. Diamond and Related Materials, 2011, 20, P. 937–943.

15. Faraon A., Barclay P.E., Santori C., Fu K.-M.C., Beausoleil R.G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photonics, 2011, 5,P. 301–305.

16. Riedrich-Moller J., Kipfstuhl L., Hepp C., Neu E., Pauly C., M ¨ ucklich F., Baur A., Wandt M., Wolff S., Fischer M., et al. One- and two- ¨ dimensional photonic crystal microcavities in single crystal diamond. Nature Nanotechnology, 2012, 7, P. 69–74.

17. Faraon A., Santori C., Huang Z., Acosta V.M., Beausoleil R.G. Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond. Phys. Rev. Lett., 2012, 109, P. 033604.

18. Evans R.E., Sipahigil A., Sukachev D.D., Zibrov A.S., Lukin M.D. Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation. Phys. Rev. Applied, 2016, 5, P. 044010.

19. Sipahigil A., Evans R.E., Sukachev D.D., Burek M.J., Borregaard J., Bhaskar M.K., Nguyen C.T., Pacheco J.L., Atikian H.A., Meuwly C., et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 2016, 354, P. 847–850.

20. Gregor M., Henze R., Schroder T., Benson O. On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microres- ¨ onator. Applied Physics Letters, 2009, 95, P. 153110.

21. Wolters J., Schell A.W., Kewes G., Nusse N., Schoengen M., D ¨ oscher H., Hannappel T., L ¨ ochel B., Barth M., Benson O. Enhancement of the ¨ zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Applied Physics Letters, 2010, 97, P. 141108.

22. Liebermeister L., Petersen F., Munchow A.V., Burchardt D., Hermelbracht J., Tashima T., Schell A.W., Benson O., Meinhardt T., Krueger ¨ A., et al. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center. Applied Physics Letters, 2014, 104, P. 031101.

23. van der Sar T., Heeres E.C., Dmochowski G.M., de Lange G., Robledo L., Oosterkamp T.H., Hanson R. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Applied Physics Letters, 2009, 94, P. 173104.

24. Barclay P.E., Santori C., Fu K.-M., Beausoleil R.G., Painter O. Coherent interference effects in a nano-assembled diamond NV center cavityQED system. Opt. Express, 2009, 17, P. 8081–8197.

25. Englund D., Shields B., Rivoire K., Hatami F., Vuckovi ˇ c J., Park H., Lukin M.D. Deterministic Coupling of a Single Nitrogen Vacancy Center ´ to a Photonic Crystal Cavity. Nano Letters, 2010, 10, P. 3922–3926.

26. Gould M., Schmidgall E.R., Dadgostar S., Hatami F., Fu K.-M.C. Efficient Extraction of Zero-Phonon-Line Photons from Single NitrogenVacancy Centers in an Integrated GaP-on-Diamond Platform. Phys. Rev. Applied, 2016, 6, P. 011001.

27. Alagappan G., Krivitsky L.A., Png C.E. Diamond in a Nanopocket: A New Route to a Strong Purcell Effect. ACS Omega, 2018, 3, P. 4733– 4742.

28. Silverstone J.W., Bonneau D., Ohira K., Suzuki N., Yoshida H., Iizuka N., Ezaki M., Natarajan C.M., Tanner M.G., Hadfield R.H., et al. On-chip quantum interference between silicon photon-pair sources. Nature Photonics, 2014, 8, P. 104–108.

29. Lodahl P., Mahmoodian S., Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 2015, 87, P. 347–400.

30. Johnson S., Dolan P.R., Smith J.M. Diamond photonics for distributed quantum networks. Progress in Quantum Electronics, 2017, 55, P. 129– 165.

31. Fu K.-M.C., Santori C., Barclay P.E., Aharonovich I., Prawer S., Meyer N., Holm A.M., Beausoleil R.G. Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide. Applied Physics Letters, 2008, 93, P. 234107.

32. Schroder T., Fujiwara M., Noda T., Zhao H.-Q., Benson O., Takeuchi S. A nanodiamond-tapered fiber system with high single-mode coupling ¨ efficiency. Opt. Express, 2012, 20, P. 10490–10497.

33. Liebermeister L. Photonic Waveguides Evanescently Coupled with Single NV-centers. Fakultat fur Physik der LudwigMaximiliansUniversitat Munchen, 2015.

34. Fujiwara M., Neitzke O., Schroder T., Schell A.W., Wolters J., Zheng J., Mouradian S., Almoktar M., Takeuchi S., Englund D., et al. Fiber- ¨ Coupled Diamond Micro-Waveguides toward an Efficient Quantum Interface for Spin Defect Centers. ACS Omega, 2017, 2, P. 7194–7202.

35. Krasnok A., Glybovski S., Petrov M., Makarov S., Savelev R., Belov P., Simovski C., Kivshar Y. Demonstration of the enhanced Purcell factor in all-dielectric structures. Applied Physics Letters, 2016, 108, P. 211105.

36. Savelev R.S., Sergaeva O.N., Baranov D.G., Krasnok A.E., Alu A. Dynamically reconfigurable metal-semiconductor Yagi-Uda nanoantenna. ` Phys. Rev. B, 2017, 95, P. 235409.

37. Yao P., Manga Rao V., Hughes S. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser & Photonics Reviews, 2010, 4, P. 499–516.

38. Javadi A., Mahmoodian S., Sollner I., Lodahl P. Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal ¨ waveguides. J. Opt. Soc. Am. B, 2018, 35, P. 514–522.

39. Arcari M., Sollner I., Javadi A., Lindskov Hansen S., Mahmoodian S., Liu J., Thyrrestrup H., Lee E.H., Song J.D., Stobbe S., et al. Near-Unity ¨ Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide. Phys. Rev. Lett., 2014, 113, P. 093603.

40. Wang Y., Wang X., Flueckiger J., Yun H., Shi W., Bojko R., Jaeger N.A.F., Chrostowski L. Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt. Express, 2014, 22, P. 20652–20662.

41. Zhu L., Yang W., Chang-Hasnain C. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. Opt. Express, 2017, 25, P. 18462–18473.

42. Novotny L., Hecht B. Principles of Nano-optics. Cambridge University Press, New York, 2006.

43. Rogobete L., Schniepp H., Sandoghdar V., Henkel C. Spontaneous emission in nanoscopic dielectric particles. Opt. Lett., 2003, 28, P. 1736– 1738.

44. Green M.A. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Solar Energy Materials and Solar Cells, 2008, 92, P. 1305–1310.

45. Baranov D.G., Zuev D.A., Lepeshov S.I., Kotov O.V., Krasnok A.E., Evlyukhin A.B., Chichkov B.N. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica, 2017, 4, P. 814–825.


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2019;10(3):266-272. https://doi.org/10.17586/2220-8054-2019-10-3-266-272

For citation:


Sergaeva O.N., Volkov I.A., Savelev R.S. Resonant dielectric waveguide-based nanostructure for efficient interaction with color centers in nanodiamonds. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(3):266-272. (In Russ.) https://doi.org/10.17586/2220-8054-2019-10-3-266-272

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)