Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A theoretical study of the propagation of light soliton produced by semiconductor quantum dots through optical fibers

https://doi.org/10.17586/2220-8054-2019-10-3-273-281

Abstract

In this paper, the propagation of light soliton is studied in nonlinear optical fiber. We propose the external excitation of semiconductor quantum dot (SQD) waveguides through an optical source which allows the generation of solitonic pulses. These solitonic pluses are propagated through a nonlinear optical fiber. Soliton formation is investigated by the interaction between the external optical excitation and SQDs. Here, the SQDs are considered as a quantum system of three energy levels. In this study, the Fourier Split-Step (FSS) method is used to solve the numerically continuous nonlinear Schrdinger equation (NLSE) for evolution of the soliton pulse emitted by the SQDs inside an optical fiber with real physical parameters. The effect of a SQD’s density and electric field on the pulse width is also studied. Phase plane portraits are drawn to observe the stability of soliton in fiber and SQDs.

About the Authors

O. P. Swami
Government College
India

Department of Physics

Loonkaransar, Bikaner, Rajasthan, 334001



V. Kumar
Government Dungar College
India

Department of Physics

Bikaner, Rajasthan, 334001



B. Suthar
MLB Government College
India

Department of Physics

Nokha, Bikaner, Rajasthan, 334803



A. K. Nagar
Government Dungar College
India

Department of Physics

Bikaner, Rajasthan, 334001



References

1. Pavesi L., Dal Negro L., et al. Optical gain in silicon nanocrystals. Nature, 2000, 408, P. 440–444.

2. Hu Y.M., Yang W.L., Feng M., Du J.F. Distributed quantum-information processing with fullerene-caged electron spins in distant nanotubes. Phys. Rev. A, 2009, 80, P. 022322(1–13).

3. Maximo L., Mendez V.H. Autoensamblado de puntos cunticos. ´ Cinvestav, 2008, 27, P. 44–49.

4. Hanewinkel B., Knorr A., Thomas P., Koch S.W. Optical near-field response of semiconductor quantum dots. Phys. Rev. B, 1997, 55, P. 13715(1–10).

5. Aknmanov S.A., Visloukh V.A., Chirkin A.S. Optics of Femtosecond Laser Pulses. New York, American Institute of Physics, 1992.

6. Klimov V.I., Mikhailovsky A.A., et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, 290, P. 314–317.

7. Yang W.X., Chen A.X., Lee R.K., Wu Y. Matched slow optical soliton pairs via biexcition coherence in quantum dots. Phys. Rev. A, 2011, 84, P. 013835(1–11).

8. Hu L., Wu H., et al. The effect of annealing and photoactivation on the optical transitions of band-band and surface trap states of colloidal quantum dots in PMMA. Nanotechnology, 2011, 22, P. 125202(1–8).

9. Adamashvili G.T., Weber C., Knorr A. Optical nonlinear waves in semiconductor quantum dots: Solitons and breathers. Phys. Rev. A, 2007, 75, P. 1–9.

10. Newell A.C. Solitons in Mathematics and Physics. Philadelphia, Society for Industrial and Applied Mathematics, 1985.

11. Ajayan P.M., Schadler L.S., Braun P.V. Nanocomposite science and technology. Weinheim, Germany, Wiley, 2003.

12. Rothenberg J.E., Grischkowsky D., Balant A.C. Observation of the Formation of the 0π Pulse. Phys. Rev. Lett., 1984, 53, P. 552–555.

13. Chen M., Kaup D.J., Malomed B.A. Three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities. Phys. Rev. E, 2004, 69, P. 056605(1–17).

14. Bimberg D., Grundmann M., Ledentsov N.N. Quantum Dot Heterostructures. Chichester, Wiley, 1999.

15. Schneider S., Borri P., et al. Self-induced transparency in InGaAs quantum-dot waveguides. Appl. Phys. Lett., 2003, 83, P. 3668–3670.

16. Panzarini G., Hohenester U., Molinari E. Self induced transparency in semiconductor quantum dots. Phys. Rev. B, 2002, 65, P. 165322(1–6).

17. Klimov V.I. Nanocrystal quantum dots. Los Alamos Science, 2003, 28, P. 214–220.

18. Chen Y., Herrnsdorf J., et al. Colloidal quantum dot random laser. Opt. Express, 2011, 19, P. 2996–3003.

19. Akhmediev N., Ankiewicz A. Solitons, Nonlinear pulses and Beams. London, Chapman and Hall, 1997.

20. Kevrekidis P.G., Rasmussen K.O., Bishop A.R. Two-dimensional discrete breathers: Construction, stability, and bifurcations. Phys. Rev. E, 2000, 61, P. 2006(1–7).

21. Blum K. Density Matrix Theory and Applications, 2nd ed. New York, Plenum Press, 1996.

22. Adamashvili G.T., Weber C., Knorr A. Optical solitons in semiconductor Quantum dots. Eur. Phys. J. D, 2008, 47, P. 113–117.

23. Malomed B.A., Kevrekidis P.G. Discrete vortex solitons. Phys. Rev. E, 2001, 64, P. 026601(1–6).

24. Lamb Jr.G.L. Elements of soliton theory. New York, Wiley, 1980.

25. Lamb Jr.G.L. Optical waves in crystals. New York, Wiley, 1980.

26. Oster M., Johansson M. Stable stationary and quasiperiodic discrete vortex breathers with topological charge S = 2. Phys. Rev. E, 2006, 73, P. 066608(1–6).


Review

For citations:


Swami O.P., Kumar V., Suthar B., Nagar A.K. A theoretical study of the propagation of light soliton produced by semiconductor quantum dots through optical fibers. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(3):273-281. (In Russ.) https://doi.org/10.17586/2220-8054-2019-10-3-273-281

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)