Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The use of nanocluster polyoxometalates in the bioactive substance delivery systems

https://doi.org/10.17586/2220-8054-2019-10-3-318-349

Abstract

Nanoscale systems occupy the most important place among the vehicles intended for targeted drug delivery. Such vehicles are considered in this review. Attention is paid to the nanocluster polyoxometalate-based systems which are promising for transdermal iontophoretic transport. In this relation, and due to the characteristics of the skin as a transport medium, the problems of the transfer processes modeling are considered.

About the Authors

A. A. Ostroushko
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Ekaterinburg



I. D. Gagarin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Ekaterinburg



I. G. Danilova
Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



I. F. Gette
Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. Holgado M.A., Martin-Banderas L., Alvarez-Fuentes J., Fernandez-Arevalo M., Arias J.L. Drug Targeting to Cancer by Nanoparticles Surface Functionalized with Special Biomolecules. Curr. Med. Chem., 2012, 19(19), P. 3188–3195.

2. Parashar A.K., Kakde D., Chadhar V., Devaliya R, Shrivastav V., Jai U.K. A review on Solid Lipid Nanoparticles (SLN) for controlled and targeted delivery of medicinal agents. Curr. Res. Pharm. Sci., 2011, 1(2), P. 367–47.

3. Ventola C.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs. Pharm. and Therapeutics, 2017, 42(12), P. 742–755.

4. Farokhzad O.C., Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano, 2009, 3(1), P. 16–20.

5. Chen Y., Bose A., Bothun G.D. Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating. ACS Nano, 2010, 4(6), P. 3215–3221.

6. Ganta S., Devalapally H., Shahiwala A., Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control Release, 2008, 126(3), P. 187–204.

7. Torchilin V.P. Nanoparticulates as drug carriers. Imperial College Press, London, 2006, 754 p.

8. Pal S.L., Jana U., Manna P.K., Mohanta G.P., Manavalan R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci., 2011, 1(6), P. 228–234.

9. Niu Z. Targeted transport therapeutic nanoparticles into adipose tissue. J. Pharm. Drug Deliv. Res., 2018, 7, P. 76.

10. Alyautdin R., Khalin I., Nafeeza M.I., Haron M.H., Kuznetsov D. Nanoscale drug delivery systems and the blood–brain barrier. Intern. J. Nanomed., 2014, 9, P. 795–811.

11. Lu C.T., Jin R.-R., Yi-Na Jiang Y.N., Lin Q., Yu W.-Z., Mao K.-L., Tian F.-R., Zhao Y.-P., Zhao Y-Z. Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: an in vitro and in vivo study. Drug Design, Development and Therapy, 2015, 9, P. 1955–1962.

12. Sahoo S.K, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm., 2005, 2, P. 373–383.

13. Prabhu V., Uzzaman S., Grace V.M.B, Guruvayoorappan C. Nanoparticles in Drug Delivery and Cancer Therapy: The Giant Rats Tail. J. Cancer Therapy, 2011, 2, P. 325–334.

14. Gu F., Langer R., Omid C., Farokhzad O.C. Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery. Micro and Nano Technologies in Bioanalysis, Methods in Molecular Biology (Humana Press, a part of Springer Science + Business Media, LLC 2009), 2009, 544(Ch.37), P. 589–598.

15. Jain K.K. The Role of Nanobiotechnology in Drug Discovery. Drug Discover Today, 2005, 10(21), P. 1435–1442.

16. Mishra B., Patel B.B., Tiwari S. Colloidal Nanocarriers: A Review on Formulation Technology, Types and Applications toward Targeted Drug Delivery, Nanomed., 2010, 6(1), P. 9–24.

17. Majuru S., Oyewumi O. Nanotechnology in Drug Development and Life Cycle Management. Nanotechnology in Drug Delivery, 2009, 10(4), P. 597–619.

18. Pridgen E.M., Alexis F., Kuo T.T., Levy-Nissenbaum E., Karnik R., Blumberg R.S., Langer R., Farokhzad O.C Transepithelial Transport of Fc -Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery. Sci. Transl. Med., 2013, 5(213), P. 213–237.

19. Yu M.K., Park J., Jon S. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics, 2012, 2(1), P. 3–44.

20. Allen T.M., Cullis P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303, P. 1818–1822.

21. Brannon-Peppas L., Blanchette J.O. Nanoparticle and target systems for cancer therapy. Adv. drug delivery rev., 2004, 56, P. 1649–1659.

22. Perr D., Karp J.M., Hong S., Farokhzad O.C., Magalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology, 2007, 2(12), P. 751–760.

23. Lao J., Madani J., Puertolas T., ´ Alvarez M., Hern ´ andez H., Pazo-Cid R.C., Artal A., Antonio A. Liposomal Doxorubicin in the Treatment of ´ Breast Cancer Patients: A Review. J. Drug Delivery, 2013, 3, P. 1–12.

24. Bagherifam S., Skjeldal F.M., Griffiths G., Mælandsmo G.M., Olav Engebraten O, Nystr ˚ om B., Hasirci V., Hasirci N. pH-Responsive Nano ¨ Carriers for Doxorubicin Delivery. Pharm. Res., 2015, 32, P. 1249–1263.

25. Gardikis K., Tsimplouli C., Dimas K., Micha-Screttas M., Demetzos C. New chimeric advanced Drug Delivery nano Systems (chi-aDDnSs) as doxorubicin carriers. Int. J. Pharm., 2010, 402(1-2), P. 231–237.

26. Hira S.K., Mishra A.K., Ray B., Manna P.P. Targeted Delivery of Doxorubicin-Loaded Poly(e-caprolactone)-b-Poly (N-vinylpyrrolidone) Micelles Enhances Antitumor Effect in Lymphoma. PLoS ONE, 2014, 9(4), P. 1–17.

27. Takahama H., Minamino T., Asanuma H. et al. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats. J. Amer. College Cardiol., 2009, 53(8), P. 709–717.

28. Navarro G., Pan J., Torchilin V.P. Micelle-like Nanoparticles as Carriers for DNA and siRNA. Mol. Pharm., 2015, 12, P. 301–313.

29. Zhang C., Zhu W., Liu Y., Yuan Z., Yang S., Chen W., Li J., Zhou X., Liu C., Zhang X. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy, 2016. (www.nature.com/scientificreports/). P. 1–12.

30. Zuckerman J.E., Gritli I., Tolcher A., Heidel J.D., Lim D., Morgan R., Chmielowski B., Ribas A., Davis M.E., Yen Y. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Nat. Acad. Scie., 2014, 111, P. 11449–11454.

31. Baskar G., George G.B., Chamundeeswari M. Synthesis and Characterization of Asparaginase Bound Silver Nanocomposite Against Ovarian Cancer Cell Line A2780 and Lung Cancer Cell Line A549. J. Inorg. and Organomet. Polymers and Mater., 2017, 27(1), P. 87–94.

32. Rosales-Mart´ınez P., Cornejo-Mazon M., Arroyo-Maya I.J., Hern ´ andez-S ´ anchez H. Chitosan Micro- and Nanoparticles for Vitamin Encapsu- ´ lation. Nanotech. Appl. Food Industr., 2018, 19, P. 429–442.

33. Hwang J., Rodgers K., Oliver J.C., Schluep Th. α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Inter. J. Nanomed., 2008, 3, P. 359–371.

34. Nanotechnology in Drug Delivery. Ed. de Villiers M.M., Aramwit P., Kwon G.S.: Springer-Verlag, New York, 2009, 662 p.

35. Fundamentals and Applications of Controlled Release Drug Delivery. Ed. Siepmann J., Siegel R.A., Rathbone M.J. Springer US, 2012, 594 p.

36. Demetzos C. Pharmaceutical Nanotechnology. ADIS, 2016, 203 p.

37. Nanotechnology Applied To Pharmaceutical Technology. Ed. Rai M., dos Santos C.A. Springer International Publishing, 2017, 386 p.

38. Hoffman A.S. The origins and evolution of “controlled” drug delivery systems. J. Controlled Release, 2008, 132(3), P. 153–163.

39. Nanjunda Reddy B.H., Venkata Lakshmi V., Vishnu Mahesh K.R., Mylarappa M., Raghavendra N., Venkatesh T. Preparation of chitosan/different organomodified clay polymer nanocomposites: studies on morphological, swelling, thermal stability and antibacterial properties. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 667–674.

40. Iwai K., Maeda H., Konno T. Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer research, 1984, 44(5), P. 2115–2121.

41. Kryuk T.V., Mikhal’chuk V.M., Petrenko L.V., Nelepova O.A., Nikolaevskii A.N. Antioxidative Stabilization of Polyethylene Glycol in Aqeous Solutions with Herb Phenols. Russ. J. Appl. Chem., 2004, 77(1), P. 131–135.

42. Ostrovskii V.A. Interphase Transfer Catalysis of Organics Reactions. Soros Education J., 2000. 6(11), P. 30–34.

43. Lasic D.D., Barenholz Y. Handbook of nonmedical applications of liposomes: Theory and basic sciences. 1, CRC Press, Boca Raton, FL, USA, 1996, 368 p.

44. Gobley T.N. Sur la lecithine et la c ´ er´ ebrine. ´ J. de Pharmacie et de Chimie, 1874, 20, P. 346–354.

45. Strecker A. Ueber das Lecithin. Annalen der Chemie und Pharmacie, 1868, 148(1), P. 77–90.

46. Bangham A., Horne R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Molec. Biol., 1964, 8(5), P. 660–668.

47. Deshmukh R.R., Gawale S.V., Bhagwat M.K., Ahire P.A., Derle N.D. A review on liposomes. World J. Pharm. Pharm. Sci., 2016, 5(3), P. 506–517.

48. Bangham A., Standish M., Watkins J. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Molec. Biol., 1965, 13(1), P. 238–252.

49. Bozzuto G., Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed., 2015, 10(1), P. 975–999.

50. Biju S.S., Talegaonkar S., Mishra P.R., Khar R.K., Vesicular systems: An overview. Ind. J. Pharm. Sci., 2006, 68(2), P. 141–153.

51. Garg T., K. Goyal A. Liposomes: Targeted and Controlled Delivery System. Drug Delivery Lett., 2014, 4(1), P. 62–71.

52. Szoka F., Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Nat. Acad. Sci., 1978, 75(9), P. 4194–4198.

53. Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett., 2013, 8(1), P. 102–110.

54. Batzri S., Korn E.D. Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1973, 298(4), P. 1015–1019.

55. Olson F., Hunt C.A., Szoka F.C., Vail W.J., Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1979, 557(1), P. 9–23.

56. Touitou E., Junginger H., Weiner N., Nagai T., Mezei M. Liposomes as Carriers for Topical and Transdermal Delivery. J. Pharm. Sci., 1994, 83(9), P. 1189–1203.

57. Touitou E., Levi-Schaffer F., Dayan N., Alhaique F., Riccieri F. Modulation of Caffeine Skin Delivery by Carrier Design: Liposomes versus Permeation Enhancers. Int. J. Pharm., 1994, 103(2), P. 131–136.

58. Laouini A., Jaafar-Maalej C., Limayem-Blouza I., Sfar S., Charcosset C., Fessi H. Preparation, Characterization and Applications of Liposomes: State of the Art. J. Colloid Sci. and Biotechn., 2012, 1(2), P. 147–168.

59. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4, P. 145–160.

60. Takahama H., Minamino T., Asanuma H. Fujita M., Asai T., Wakeno M., Sasaki H., Kikuchi H., Hashimoto K., Oku N., Asakura M., Kim J., Takashima S., Komamura K., Sugimachi M., Mochizuki N., Kitakaze M. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats. J. Amer. College of Cardiology, 2009, 53(8), P. 709–717.

61. Gregoriadis G., Swain C.P., Wills E.J., Tavill A.S. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet, 1974, 1, P. 1313–1316.

62. Tam Y.C., Chen S., Cullis P.R. Advances in Lipid Nanoparticles for siRNA Delivery, Pharmaceutic, 2013, 5, P. 498–507.

63. Anwekar H., Patel S., Singhai A.K. Liposomes as drug carriers. Int. J. Pharm. Life Sci. (IJPLS), 2011, 2(7), P. 945–951.

64. Akbarzadeh A., Rezaei-Sadabady R., Nejati K. Liposome: classification, preparation, and applications. Nanoscale Research Letters, 2013,

65. Johnston M.J., Semple S.C., Klimuk S.K., Ansell S., Maurer N., Cullis P.R. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta, 2007, 1768, P. 1121–1127.

66. Raney S.G., Wilson K.D., Sekirov L., Chikh G., de Jong S.D., Cullis P.R., Tam Y.K. The effect of circulation lifetime and drug-to-lipid ratio of intravenously administered lipid nanoparticles on the biodistribution and immunostimulatory activity of encapsulated CpG-ODN. J. Drug. Target, 2008, 16(7), P. 564–77.

67. Fenske D.B., Chonn A. Cullis. Liposomal Nanomedicines: An Emerging Field. Toxicologic Pathology, 2008, 36, P. 21–29.

68. Fenske D.B., Cullis P.R. Liposomal Nanomedicines. Expert Opin. Drug. Deliv., 2008, 5(1), P. 25–44.

69. Barsukov L.I. Liposomes. Soros Education J., 1998, 10, P. 2–9.

70. Smyslov R.Yu., Ezdakova K.V., Kopitsa G.P., Khripunov A.K., Bugrov A.N., Tkachenko A.A., Angelov B., Pipich V., Szekely N.K., Baranchikov A.E., Latysheva E., Chetverikov Yu.O., Haramus V. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials. J. Phys.: Conf. Ser., 2017, 848(1), P. 012017.

71. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 391–396.

72. Bugrov A.N., Zavialova A.Yu., Smyslov R.Yu., Anan’eva T.D., Vlasova E.N., Mokeev M.V., Kryukov A.E., Kopitsa G.P., Pipich V. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, 33(5), P. 837–849.

73. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.Ye., Ivanov V.K. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(6), P. 760–781.

74. Bugrov A.N., Rodionov I.A., Zvereva I.A., Smyslov R.Yu., Almjasheva O.V. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13(1/2/3), P. 147–157.

75. Shydlovska O., Kharchenko E., Zholobak N., Shcherbakov A., Marynin A., Ivanova O., Baranchikov A., Ivanov V. Cerium oxide nanoparticles increase the cytotoxicity of TNF alpha in vitro. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(4), P. 537–543.

76. Almjasheva O.V., Smirnov A.V., Fedorov B.A., Tomkovich M.V., Gusarov V.V. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84(5), P. 804–809.

77. Popov A.L., Savintseva I.V., Mysina E.A., Shcherbakov A.B., Popova N.R., Ivanova O.S., Kolmanovich D.D., Ivanov V.K. Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 430–438.

78. Jayakumar G., Irudayaraj A., Dhayal Raj A., Anusuya M. Investigation on the preparation and properties of nanostructured cerium oxide. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 728–731.

79. Vardanyan Z., Gevorkyan V., Ananyan M., Vardapetyan H., Trchounian A. Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport. J. Nanobiotechnol, 2015, 13(69), P. 2–9.

80. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kirilenko D.A., Pankin D.V. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 378–388.

81. Popov A.L., Ermakov A.M., Shekunova T.O., Shcherbakov A.B., Ermakova O.N., Ivanova O.S., Popova N.R., Baranchikov A.Ye., Ivanov V.K. PVP-stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts via induction of intracellular oxidative stress. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(1), P. 92–101.

82. Sharker S.Md., Kim S.M., Lee J.E., Choi K.H., Shin G., Lee S., Lee D.K., Jeong J., Park S.Y. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control. Release, 2015, 217, P. 211–220.

83. Zhou Z., Kong B., Yu C., Shi X., Wang M., Liu W., Sun Y., Zhang Y., Yang H., Yang S. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci. Rep., 2014, 4, P. 3653–3663.

84. Xing Y., Li L., Ai X., Fu L. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy. Intern. J. Nanomed., 2016, 11, P. 4327–4338.

85. Popov A.L., Savintseva I.V., Mysina E.A., Shcherbakov A.B., Popova N.R., Ivanova O.S., Kolmanovich D.D., Ivanov V.K. Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 430–438.

86. Slowing I.I. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), P. 1278–1288.

87. Vasilevskaya A. K., Almjasheva O.V., Gusarov V.V. Formation of nanocrystals in the ZrO2–H2O system. Russ. J. Gen. Chem., 2015, 85(12), P. 1937–1942.

88. Popkov V.I., Tugova E.A., Bachina A.K., Almyasheva O.V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ. J. Gen. Chem., 2017, 87(11), P. 1771–1780.

89. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskiy V.N., Gusarov V.V. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater Sci: Mater Electron., 2017, 28(10), P. 7163–7170.

90. Berezhnaya M.V., Al’myasheva O.V., Mittova V.O., Nguen A.T., Mittova I.Ya. Sol-Gel Synthesis and Properties of Y1−xBaxFeO3 Nanocrystals. Russ. J. Gen. Chem., 2018, 88(4), P. 626–631.

91. Komlev A.A., Panchuk V.V., Semenov V.G., Almjasheva O.V., Gusarov V.V. Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase-spinel nanopowders in the MgO–Fe2O3–H2O System. Russ. J. Appl. Chem., 2016, 89(12), P. 1932–1938.

92. Kuznetsova V.A., Almjasheva O.V., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Phys. Chem., 2009, 35(2), P. 205–209.

93. Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of Nanocrystalline BiFeO3 under Hydrothermal Conditions. Russ. J. Gen. Chem., 2017, 87(11), P. 2507–2515.

94. Almjasheva O.V., Gusarov V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89(6), P. 689–695.

95. Sharikov F.Yu., Almjasheva O.V., Gusarov V.V. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Russ. J. Inorg. Chem., 51(10), P. 1538–1542.

96. Almjasheva O.V., Gusarov V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89(6), P. 851–856.

97. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2018, 9(4), P. 568–572.

98. Abiev R.Sh., Al’myasheva O.V., Gusarov V.V., Izotova S.G. Method of producing nanopowder of cobalt ferrite and microreactor to this end. RF Patent 2625981, Bull. 20, 20.07.2017.

99. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. J. Chem. Tech. App., 2017, 1(1), P. 7–13.

100. Proskurina O.V., Nogovitsin I.V., Il’ina T.S., Danilovich D.P., Abiev R.Sh., Gusarov V.V. Formation of BiFeO3 Nanoparticles Using Impinging Jets. Microreactor. Russ. J. Gen. Chem., 2018, 88(10), P. 2139–2143.

101. Bugrov A.N., Vlasova E.N., Mokeev M.V., Popova E.N., Ivan’kova E.M., Al’myasheva O.V., Svetlichnyi V.M. Distribution of zirconia nanoparticles in the matrix of poly(4,40-oxydiphenylenepyromellitimide). Polym. Sci. Ser. B., 2012, 54(9-10), P. 486–495.

102. Almjashev O.V., Gusarov V.V. Effect of ZrO2 nanocrystals on the stabilization of the amorphous state of alumina and silica in the ZrO2- Al2O3and ZrO2-SiO2 systems. Glass Phys. Chem., 2006, 32 (2), P. 162–166.

103. Kotov Y.A. Electric explosion of wires as a method for preparation of nanopowders. J. Nanoparticle Research, 2003, 5(5-6), P. 539–550.

104. Kotov Y.A., Azarkevich E.I., Beketov I.V., Demina T.M., Murzakaev A.M., Samatov O.M. Producing A1 and A1203 nanopowders by electrical explosion of wire. Key Engineering Materials, 1997, 132–136, P. 173–176.

105. Kotov Y.A., Samatov O.M. Production of nanometer-sized A1N powders by the exploding wire method. Nanostruct. Mater., 1999, 12, P. 119–122.

106. Sherman P. Generation of submicron metal particles. Colloid and Interface Sci., 1975, 51(1), P. 87–93.

107. Karioris F., Fish B. An Exploding Wire Aerosol Generator. J. Colloid Science, 1962, 17, P. 155–161.

108. Bennett F.D. High-temperature cores in exploding wires. Phys. Fluids, 1965, 8(6), P. 1106–1108.

109. Chace W.G. Exploding Wires. Phisics Today, 1964, 17(87), P. 19.

110. Kaori K., Hirashi I., Vasio M. The formation and characteristics of Powders by wire explosion. 2-nd report. Nippon Tungsten Rev., 1972, 5, P. 20.

111. Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge, International Science Publishing Cambridge, 2004, 351 p.

112. Alymov M.I., Maltina E.I., Stepanov Y.N. Model of Initial Stage of Ultrafme Metal Powder Sintering. Nanostructured Mater., 1994, 4(6), P. 737–742.

113. Bennett F.D., Kahl G.D., Wedemeyer E.H. Resistance Changes caused by Vaporization Waves Exploding Wires. Exploding Wires, 1964, 3, Plenum Press, New York, 1964, P. 65–84.

114. Ivanov G., Lerner M., Tepper F. Intermetallic Alloy Formation from Nanophase Metal Powders Produced by Electro-Exploding Wires. Advances in Powder Metallurgy & Particulate Materials, 1996, 40, P. 15/55–15/63.

115. Jonson R., Siegel B. Chemical Reactor Utilising Successive Multiple Electrical Explosions of Metal Wires. Rev. Sci. Instr., 1970, 42(6), P. 854–859.

116. Miller J.C. A brief history of laser ablation. Laser ablation: mechanisms and applications – II. AIP Publishing, 1993, 2889(1), P. 619–622.

117. Kirichenko N.A., Sukhov I.A., Shafeev G.A., Shcherbina M.E. Evolution of the distribution function of Au nanoparticles in a liquid under the action of laser radiation. Quantum Electronics, 2012, 42(2), P. 175–180.

118. Sukhov I.A., Shafeev G., Voronov V.V., Sygletou M., Stratakis E., Fotakis C. Generation of nanoparticles of bronze and brass by laser ablation in liquid. Appl. Surface Sci., 2014, 302, P. 79–82.

119. Zhil’nikova M.I., Barmina E.V., Shafeev G.A. Laser-Assisted Formation of Elongated Au Nanoparticles and Subsequent Dynamics of Their Morphology under Pulsed Irradiation in Water. Physics of Wave Phenomena, 2018, 26(2), P. 85–92.

120. Hiramatsu H., Osterloh F.E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater., 2004, 16(13), P. 2509–2511.

121. Simakin A.V., Voronov V.V., Shafeev G.A., Brayner R. Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem. Phys. Lett., 2001, 348(3), P. 182–186.

122. Kuzmin P.G., Shafeev G.A., Viau G., Warot-Fonrose B., Barberoglou M., Stratakis E., Fotakis C. Porous nanoparticles of Al and Ti generated by laser ablation in liquids. Appl. Surf. Sci., 2012, 258(23), P. 9283–9287.

123. Amendola V., Riello P., Meneghetti M., 2011. Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents. J. Phys. Chem. C, 2010, 115(12), P. 5140–5146.

124. Tsuji T., Iryo K., Watanabe N., Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci., 2002, 202(1–2), P. 80–85.

125. Dolgaev I., Simakin A.V., Voronov V.V., Shafeev G.A., Bozon-Verduraz F. Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci., 2002, 186(1), P. 546–551.

126. Kamat P.V., Flumiani M., Hartland G.V. Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J. Phys. Chem. B., 1998, 102(17), P. 3123–3128.

127. Hamad A., Li L., Liu Z. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water. Appl. Phys. A, 2015, 120(4), P. 1247–1260.

128. Kurland H.-D., Stotzel Ch., Grabow J., Zink I., Muller E., Staupendahl G., M ¨ uller F.A. Preparation of Spherical Titania Nanoparticles by ¨ CO2 Laser Evaporation and Process-Integrated Particle Coating. J. Amer. Ceram. Soc., 2010, 93(5), P. 1282–1289.

129. Popp U., Herbig R., Michel G., Muller E., Oestreich Ch. Properties of nanocrystalline ceramic powders prepared by laser evaporation and ¨ recondensation. J. Eur. Ceram. Soc., 1998, 18, P. 1153–116.

130. Osipov V.V., Kotov Yu.A., Ivanov M.G., Samatov O.M., Lisenkov V.V., Platonov V.V., Murzakayev A.M., Medvedev A.I., Azarkevich E.I. Laser synthesis of nanopowders. Laser Phys., 2006, 16(1), P. 116–125.

131. Kurland H.D., Grabow J., Staupendahl G., Andre M.E., Dutz S., Bellemann M.E. Magnetic iron oxide nanopowders produced by CO2 laser evaporation. J. Magnet., Magn. Mater., 2007, 311, P. 73–77.

132. Sato T., Diono W., Sasaki M., Goto M. Silver nanoparticles generated by pulsed laser ablation in supercritical CO2 medium. High Pressure Res., 2012, 32(1), P. 1–7.

133. Varma A., Mukasyan A.S., Deshpande K.T., Pranda P., Erri P.R. Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties. MRS Proc., 2003, 800, P. AA4.1–AA4.12.

134. Mokkelbost T., Kaus I., Grande T., Einarsrud M.A. Combustion Synthesis and Characterization of Nanocrystalline CeO2 Based Powders. Chem. Mater., 2004, 16(25), P. 5489–5494.

135. Wang X., Qin M., Fang F., Jia B., Wu H., Qu X., Volinsky A.A. Effect of glycine on onestep solution combustion synthesis of magnetite nanoparticles. J. Alloys Compd., 2017, 719, P. 288–295.

136. Mukasyan A.S., Epstein P., Dinka P. Solution combustion synthesis of nanomaterials. Proc. Combust. Inst., 2007, 31(2), P. 1789–1795.

137. Rogachev A.S., Mukasyan A.S. Combustion for Material Synthesis. Boca Raton, CRC Press, 2014, 424 p.

138. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev., 2016, 116(23), P. 14493–14586.

139. Ostroushko A.A. Russkikh O.V. Oxide Material Synthesis by Combustion of Organic-Inorganic Compositions. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(4), P. 476–502.

140. Kuchma E., Zolotukhin P., Belanova A., Soldatov M., Lastovina T., Kubrin S., Nikolsky A., Mirmikova L., Soldatov A. Low Toxic Maghemite Nanoparticles for Theranostic Applications. International Journal of Nanomedicine, 2017, 12, P. 6365–6371.

141. Lojk J., Bregar V.B., Strojan K., Hudoklin S., Verani P., Pavlin M., Kreft M.E. Increased Endocytosis of Magnetic Nanoparticles into Cancerous Urothelial Cells versus Normal Urothelial Cells. Histochemistry and Cell Biology, 2018, 149(1), P. 45–59.

142. Firouzi M., Poursalehi R., Delavari H., Saba F., Oghabian M.A. Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography. Int. J. Biol. Macromol., 2017, 98, P. 479–485.

143. Gelperina S., Maksimenko O., Khalansky A., Vanchugova L., Shipulo E., Abbasova K., Berdiev R., Wohlfart S., Chepurnova N., Kreuter J. Drug delivery to the brain using surfactant-coated poly (lactideco-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm., 2010, 74, P. 157–163.

144. Popova N.R., Popov A.L., Shcherbakov A.B., Ivanov V.K. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticlebasedtheranostic agents. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(2), P. 282–289.

145. Venkatesan H., Radhakrishnan S., Parthibavarman M., Kumar R.D., Sekar C. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Talanta, 2011, 85(4), P. 2166–2174.

146. Porcel E., Liehn S., Remita H., Usami N., Kobayashi K., Furusawa Y., Sech C.L., Lacombe S. Platinum Nanoparticles: A Promising Material for Future Cancer Therapy? Nanotechnology, 2010, 21(8), P. 85–103.

147. Mornet S., Vasseur S., Grasset F., Duguet E. Magnetic Nanoparticle Design for Medical Diagnosis and Therapy. Journal of Materials Chemistry, 2004, 14(14), P. 2161–2175.

148. Garanina A.S., Kireev I.I., Alieva I.B., Majouga A.G., Davydov V.A., Murugesan S., Khabashesku V.N., Agafonov V.N., Uzbekov R.E. New superparamagnetic fluorescent Fe@C-C5ON2H10-Alexa Fluor 647 nanoparticles for biological applications. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 120–122.

149. Morones J.R., Elechiguerra J.L., Camacho A., Holt K, Kouri J.B., Ramirez J.T., Yacaman M.J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology, 2005, 16(10), P. 2346–2353.

150. Alieva I., Kireev I., Rakhmanina A., Garanina A., Strelkova O., Zhironkina O., Cherepaninets V., Davydov V., Khabashesku V., Agafonov V., Uzbekov R. Magnetinduced behavior of iron carbide (Fe7C3@C) nanoparticles in the cytoplasm of living cells. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 158–160.

151. Koulikova M., Kochubey V.I. Synthesis and Optical Properties of Iron Oxide Nanoparticles for Photodynamic Therapy. Reports of Samara Scientific Center of Russian Academy of Sciences (RAS), 2012, 14(4), P. 206–209.

152. Selvamuthumari J., Meenakshi S., Ganesan M., Nagaraj S., Pandian K. Antibacterial and catalytic properties of silver nanoparticles loaded zeolite: green method for synthesis of silver nanoparticles using lemon juice as reducing agent. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 768–773.

153. Dykman L.A., Khlebtsov N.G. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Naturae, 2011, 3(2), P. 34–55.

154. Preethika R.K., Ramya R., Ganesan M., Nagaraj S., Pandian K. Synthesis and characterization of neomycin functionalized chitosan stabilized silver nanoparticles and study its antimicrobial activity. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 759–764.

155. Akbarzadeh A., Mohammad Samiei M., Soodabeh Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7, P. 144–157.

156. Tartaj P., Morales M.D.D., Veintemillas-Verdaguer S., Gonzalez-Carreno T., Serna C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 2003, 36, P. R182–R197.

157. Ghadiri M., Vasheghani-Farahani E., Atyabi F., Kobarfard F., Mohamadyar-Toupkanlou F., Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105A(10), P. 2851–2864.

158. MacBain S.C., Yiu H.H., Dobson J. Magnetic nanoparticles for gene and drug delivery Int. J. Nanomed., 2008, 3(2), P. 169–180.

159. Akbarzadeh A., Asgari D., Zarghami N., Mohammad R., Davaran S. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible co-polymers. Int. J. Nanomed., 2012, 7, P. 511–526.

160. Akbarzadeh A., Zarghami N., Mikaeili H., Asgari D., Goganian A.M., Khiabani H.K., Samiei M., Davaran S. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol. Sci. Appl., 2012, 5, P. 13–25.

161. Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 2012, 112, P. 5818–5878.

162. Kayal S., Ramanujan R.V. Anti-cancer drug loaded iron – gold core – shell nanoparticles (Fe@Au) for magnetic drug targeting. J. Nanosci. Nanotechnol., 2010, 10, P. 5527–5539.

163. Sharker S.M., Kim S.M., Lee J.E., Choi K.H., Shin G., Lee S., Lee K.G., Jeong J., Lee H., Park S.Y. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control. Release, 2015, 217, P. 211–220.

164. Popov A., Zholobak N., Balko O.I., Balko O.B., Shcherbakov A.B., Popova N.R., Ivanova-Polezhaeva O.S., Baranchikov A.E., Ivanov V.K. Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J. Photochem. Photobiol. B, 2018, 178, P. 395–403.

165. Qiu J., Xiao Q., Zheng X., Zhang L., Xing H., Ni D., Liu Y., Zhang S., Ren Q., Hua Y., Zhao K., Bu W. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Research, 2015, 8(11), P. 3580–3590.

166. Li G., Chen Y., Zhang L., Zhang M., Li S.,.Li L., Wang T., Wang C. Nano-Micro Lett. Facile Approach to Synthesize Gold Nanorod@Polyacrylic Acid/Calcium Phosphate Yolk–Shell Nanoparticles for Dual-ModeImaging and pH/NIR-Responsive Drug Delivery. Nano-Micro Lett., 2018, 10(7), P. 1–11.

167. Espinosa A., Corato R.D., Kolosnjaj-Tabi J., Flaud P., Pellegrino T., Wilhelm C. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 2016, 10(2), P. 2436–2446.

168. Antonii F. Panacea aurea-auro potabile. Hamburg, Ex Bibliopolio Frobeniano, 1618, 238 p.

169. Guterres S.S., Poletto F., Colom’e L., Raffin R., Pohlmann A. Polymeric Nanocapsules for Drug Delivery: An Overview. Colloids in Drug Delivery, 2010, Taylor & Francis/CRC Press, 3, P. 71–98.

170. Yiyun C., Zhenhua X., Minglu M., Tonguen X. Dendrimers as Drug Carriers: Applications in Different Routes of Drug. J. Pharma. Sci., 2008, 97(1), P. 123–143.

171. Inagamov S.Y., Sattarov S.S., Shadmanov K.K., Karimov A.K. Interpolymer complexes on the basis of sodium carboxymethyl cellulose – carriers nanoparticles of medicinal preparations. Mat. Conf. (Munich, Germany, 31 Oct. – 5 Nov. 2018). Education and science without borders, Fundamental and applied research in nanotechnology, 2018, 6, (http://www.science-sd.com/478-25428 and http://www.sciencesd.com/pdf/2018/6/25428.pdf).

172. Lu C.T., Jin R.R., Jiang Y.N., Lin Q., Yu W.Z., Mao K.L., Tian F.R., Zhao Y.P., Zhao Y.Z. Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: an in vitro and in vivo study. Drug Design, Development and Therapy, 2015, 9, P. 1955–1962.

173. Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm, 2009, 71, P. 445–462.

174. Chan J.M., Valencia P.M., Zhang L., Langer R., Farokhzad O.C. Polymeric Nanoparticles for Drug Delivery. Cancer Nanotechnology, 2010, 624, P. 163–175.

175. Sambanis A. Encapsulated cell systems: the future of insulin delivery? Therapeutic delivery, 2012, 3, P. 1029–1032.

176. Zhang Y., Chan H.F., Leong K.W. Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Delivery Rev., 2013, 65, P. 104-120.

177. Hernandez R.M., Orive G., Murua A., Pedraz J.L. Microcapsules and microcarriers for in situ cell delivery. ´ Adv. Drug Delivery Rev., 2010, 62, P. 711–730.

178. De Geest B.G., De Koker S., Sukhorukov G.B., Kreft O., Parak W.J., Skirtach A.G., Demeester J., De Smedt S.C., Hennink W.E. Polyelectrolyte microcapsules for biomedical applications. Soft Matter., 2009, 5, P. 282–291.

179. Jams ¨ a S., Mahlberg R., Holopainen U., Ropponen J., Savolainen A., Ritschkoff A.-C. Slow release of a biocidal agent from polymeric ¨ microcapsules for preventing biodeterioration. Progress in Organic Coatings, 2013, 76, P. 269–276.

180. Kaur I.P., Singh H. Nanostructured drug delivery for better management of tuberculosis. J. Controlled Release, 2014, 184, P. 36–50.

181. Hamley I.W., Castelletto V., Fundin J., Crothers M., Attwoodand D., Talmon Y. Close-packing of Diblock Copolymer Micelles. Colloid Polym. Sci., 2004, 282, P. 514–517.

182. Hamley I.W. Nanoshells and Nanotubes from Block Copolymers. Soft Matter., 2005, 1, P. 36–43.

183. Taboada P., Velasquez G., Barbosa S., Castelletto V., Nixon S.K., Yang Z., Heatley F., Hamley I.W., Mosquera V., Ashford M., Attwoodand D., Booth C. Block copolymers of ethylene oxide and phenyl glycidyl ether: Micellization, gelation and drug solubilization. Langmuir, 2005, 21, P. 5263–5271.

184. Manjappa A.S., Chaudhari K.R., Venkataraju M.P., Dantuluri P., Nanda B., Sidda C., Sawant K.K., Murthy R.S.R. Antibody derivatization. J. Controlled Release, 2011, 150(1), P. 2–22.

185. Kedar U., Phutane P., Shidhaye S., Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed., 2010, 6, P. 714–729.

186. Wagh A., Law B. Methods for Conjugating Antibodies to Nanocarriers. In: Ducry L. (eds.) Antibody-Drug Conjugates. Methods in Molecular Biology (Methods and Protocols), 2013, 1045, P. 249–266.

187. Cui J., Fan D., Hao J. Magnetic Mo72Fe30-embedded hybrid nanocapsules. Journal of colloid and interface science, 2009, 330(2), P. 488– 492.

188. Kroto H.W., Heath J.R., O’Brien S.C., Curl, R.F. C60: Buckminsterfullerene. Nature, 1985, 318, P. 162–163.

189. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Solid C60: a new form of carbon. Nature, 1990, 347(6291), P. 354–358.

190. Ala’a K. Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J. Chemical Soc., Chem. Commun., 1990, 20, P. 1423–1425.

191. Gerasimov V.I., Matuzenko M.Y., Proskurina O.V. Purity Analysis of Trade Produced C60 Fullerene. Mat. Phys. and Mechanics, 2012, 18(3), P. 181–185.

192. Gerasimov V.I., Trofimov A., Proskurina O. Isomers of Fullerene C60. Mat. Phys. and Mechanics, 2014, 20(1), P. 25–32.

193. Mendes R.G., Bachmatiuk A., Buchner B., Cuniberti G., Rummeli M.H. Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B, 2013. 1(4), P. 401–428.

194. Mikheev I.V., Bolotnik T.A., Volkov D.S., Korobov M.V., Proskurnin M.A. Approaches to the determination of C60 and C70 fullerene and their mixtures in aqueous and organic solutions. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 104–110.

195. Mazur A.S., Karpunin A.E., Proskurina O.V., Gerasimov V.I., Pleshakov I.V., Matveev V.V., Kuz’min Yu.I. Nuclear Magnetic Resonance Spectra of Polyhydroxylated Fullerene C60(OH)n. Phys. Solid State, 2018, 60(7), P. 1468–1470.

196. Mikheev I.V., Pirogova M.O., Bolotnik T.A., Volkov D.S., Korobov M.V., Proskurnin M.A. Optimization of the solvent exchange process for highyield synthesis of aqueous fullerene dispersions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 41–45.

197. Karpunin A.E., Gerasimov V.I., Mazur A.S., Pleshakov I.V., Fofanov Y.A. Proskurina O.V. NMR Investigation of Composite Material, Formed by Fullerenol in Polymer Matrix of Polyvinyl Alcohol. IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 2018, P. 168–171.

198. Andrievsky G.V., Klochkov V.K., Bordyuh A., Dovbeshko G.I. Comparative Analysis of Two Aqueous-Colloidal Solution of C60 Fullerene with Help of FT-IR Reflectance and UV-VIS Spectroscopy. Chem. Phys. Lett., 2002, 364, P. 8–17.

199. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radical Biology & Medicine, 2009, 47, P. 786–793.

200. Semenov K.N., Charykov N.A., Postnov V.N., Sharoyko V.V., Murin I.V. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Russ. Chem. Rev., 2016, 85(1), P. 38–59.

201. Jargalan N., Tropin T.V., Avdeev M.V., Aksenov V.L. Investigation and modeling of evolution of C60/NMP solution UVVis spectra. Nanosystems: Physics, Chemistry Mathematics, 2016, 7(1), P. 99–103.

202. Mchedlov-Petrossyan N.O., Kamneva N.N., Al-Shuuchi Y.T.M., Marynin A.I., Shekhovtsov S.V., “The peculiar behavior of fullerene C60 in mixtures of good’ and polar solvents: Colloidal particles in the toluene–methanol mixtures and some other systems”, Colloid Surf. APhysicochem. Eng. Asp., 2016, 509, P. 631–637.

203. Charykov N.A., Semenov K.N., Keskinov V.V., Garamova P.V., Tyurin D.P., Semenyuk I.V., Petrenko V.V., Kurilenko A.V., Matuzenko M.Yu., Kulenova N.A., Zolotarev A.A., Letenko D.G. Cryometry data and excess thermodynamic functions in the binary system: water soluble bisadduct of light fullerene C70 with lysine. Assymmetrical thermodynamic model of virtual Gibbs energy decomposition – VDAS. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 397–405.

204. Semenov K.N., Charykov N.A., Iurev G.O., Ivanova N.M., Keskinov V.A., Letenko D.G, Postnov V.N., Sharoyko V.V., Kulenova N.A., Prikhodko I.V., Murin I.V. Physico-chemical properties of the C60 - l -lysine water solutions, J. Mol. Liq., 2017, 225, P. 767–777.

205. Semenov K.N., Andrusenko E.V., Charykov N.A., Litasova E.V., Panova G.G., Penkova A.V., Murin I.V., Piotrovskiy L.B. Carboxylated Fullerenes: Physico-Chemical Properties and Potential Applications. Prog. Solid State Chem., 2017, 47-48, P. 19–36.

206. Tyurin D.P., Kolmogorov F.S., Cherepkova I.A., Charykov N.A., Semenov K.N., Keskinov V.A., Safyannikov N.M., Pukharenko Y.V., Letenko D.G., Segeda T.A., Shaimardanov Z. Antioxidant properties of fullerenol-d. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(6), P. 798–810.

207. Safyannikov N.M., Charykov N.A., Garamova P.V., Semenov K.N., Keskinov V.A., Kurilenko A.V., Cherepcova I.A., Tyurin D.P., Klepikov V.V., Matuzenko M.Y., Kulenova N.A., Zolotarev A.A. Cryometry data in the binary systems bisadduct of C60 and indispensable aminoacids – lysine, threonine, oxyproline. Nanosystems: Physics, Chemistry Mathematics, 2018, 9 (1), P. 46–48.

208. Dubinina I.A., Kuzmina E.M., Dudnik A.I., Vnukova N.G., Churilov G.N., Samoylova N.A. Study of antioxidant activity of fullerenols by inhibition of adrenaline autoxidation. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 153–157.

209. Shultz M.D., Duchamp J.C., Wilson J.D., Shu C.Y., Ge J., Zhang J., Gibson H.W., Fillmore H.L. Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3−x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform. J. Amer. Chem. Soc., 2010, 132(14), P. 4980–4981.

210. Bolskar R.D. Gadofullerene MRI contrast agents. Nanomedicine (Lond.), 2008, 3(2), P. 201–213.

211. Zhen M., Zheng J., Ye L., Li S., Jin C., Li K., Qiu D., Han H., Shu C., Yang Y., Wang C. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl. Mater. Interfaces, 2012, 4(7), P. 3724–3729.

212. Lebedev V.T., Kulvelis Yu.V., Runov V.V., Szhogina A.A., Suyasova M.V. Biocompatible water-soluble endometallofullerenes: peculiarities of self-assembly in aqueous solutions and ordering under an applied magnetic field. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 22–29.

213. Elistratova J., Akhmadeev B., Gubaidullin A., Korenev V., Sokolov M., Nizameev I., Stepanov A., Ismaev I., Kadirov M., Voloshina A., Mustafina A. Nanoscale hydrophilic colloids with high relaxivity and low cytotoxicity based on Gd(III) complexes with Keplerate polyanions. New J. Chem., 2017, 41, P. 5271–5275.

214. Kondrin M.V., Brazhkin V.V. Is graphane the most stable carbon monohydride? Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 44–50.

215. Mo K., Jiang T., Sun W., Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomater., 2015, 50, P. 67–74.

216. Thabitha P., Shareena D., McShan D., Dasmahapatra A.K., Tchounwou P.B. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-Micro Lett., 2018, 10(53); P. 1–34.

217. Amirov R.H., Iskhakov M.E., Shavelkina M.B. Synthesis of high purity multilayer graphene using plasma jet. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 60–64.

218. Ren L., Zhang Y., Cui C., Bi Y., Ge X. Functionalized graphene oxide for anti-VEGF siRNA delivery: preparation, characterization and evaluation in vitro and in vivo. RSC Adv., 2017, 7, P. 20553–20566.

219. Seliverstova E.V., Ibrayev N.Kh., Dzhanabekova R.K. Study of graphene oxide solid films prepared by Langmuir–Blodgett technology. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 65–70.

220. Kondrin M.V., Brazhkin V.V. Is graphane the most stable carbon monohydride? Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 44–50.

221. Iijima S., Ichihashi T. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 1993, 363, P. 603–605.

222. Tessonnier J.-P., Rosenthal D., Yansen T.W., Hess C., Schuster M.E., Matthey J., Blume R., Girgsdies F., Pfnder N., Timpe O., Su D. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon, 2009, 47, P. 1779–1798.

223. Trostenson E.T., Ren Z., Chou T.W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Sci. and Technology, 2001, 61, P. 1899–1912.

224. Eletskii A.V. Carbon nanotubes. Advances in Physical Sciences, 1997, 167(9), P. 945–972.

225. Oncel C., Yurum Y. Carbon Nanotube Syntesis via Catalytic CVD Method: A Review on the Effect of Reaction Parameters. Fullerenes, Nanotubes and Carbon Nanostructures, 2006, 14, P. 17–37.

226. Resasco D.E., Alvarez W.E., Pompeo F., Balzano L., Herrera J.E., Kitiyanan B., Borgna A. A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst. J. Nanoparticle Res., 2002, 4, P. 131–136.

227. Kitiyanan B., Alvarez W.E., Harwell J.H., Resasco D.E. Controlled production of single-wall carbon naotubes by catalutic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett., 2000, 317, P. 497–503.

228. Xu, F., Zhao, H., Tse, S.D. Carbon nanotube synthesis on catalytic metal alloys in methane/air counter flow diffusion flames. Proc. Combust. Inst., 2007, 31, P. 1839–1847.

229. Nasibulin A.G., Moisala A., Jiang H., Kauppinen E.I. Carbon nanotube synthesis from alcohols by a novel aerosol method. J. Nanoparticle Res., 2006, 8, P. 465–475.

230. Sadeghian Z. Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane. New Carbon Mater., 2009, 24(1), P. 33–38.

231. Liu X., Ly J., Han S., Zhang D., Requich A., Thompson E., Zhou C. Syntesis and Electronic Properties of Individual Sihgle-Walled Carbon Nanotube/Pjlypyrrole Composite Nanocables. Adv. Mater., 2005, 17, P. 2727–2732.

232. Nasibulin A.G., Moisala A., Brown D.P., Jiang H., Kauppinen E.I. A novel aerosol method for single walled carbon nanotube synthesis. Chem. Phys. Lett., 2005, 402, P. 227–232.

233. Nyamori V.O., Nxumalo E.N., Coville N.J. The effect of arylerrocene ring substituents on the synthesis of multi-walled carbon nanotubes. J. Organomet. Chem., 2009, 343, P. 290–298.

234. Bronikowski M.J., Willis P.W., Colbert D.T., Smith K.A., Smolley R.E. Gas-phase production of carbon single-walled nanotube fro carbon monoxide via the HiPCO process: A parametric study. J. Vac. Sci. Technol. A, 2001, 19(4), P. 1800–1805.

235. Ebbesen T.W., Ajayan P.M., Hiura H., Tanigaki K. Purification of nanotubes. Nature, 1994, 367, P. 519.

236. Hou P.X., Liu C., Cheng H.M. Purification of carbon nanotubes. Carbon, 2008, 46, P. 2003–2025.

237. Jakubek L.M., Marangoudakis S., Raingo J., Liu X., Lipscombe D., Hurt R.H. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomater., 2009, 30, P. 6351–6357.

238. Bianco A., Kostarelos K., Partidos C.D., Prato M. Biomedical applications of functionalized carbon nanotubes. Chem. Commun. (Cambridge, UK), 2005, 5, P. 571–577.

239. Singh R., Pantarotto D., McCarthy D. Binding and condensation of plasmid DNA onto functionalized carbon nano-tubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127, P. 4388–4396.

240. Mahmood M., Karmakar A., Fejleh A., Mocan T., Iancu C., Mocan L., Iancu D.T., Xu Y., Dervishi E., Li Z., Biris A.R., Agarwal R., Ali N., Galanzha E.I., Biris A.S., Zharov V.P. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and antitumor drug. Nanomed. (London), 2009, 4, P. 883–893.

241. Liu Z., Fan A.C., Rakhra K., Sherlock S., Goodwin A., Chen X., Yang Q., Felsher D.W., Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl., 2009, 41(48), P. 7668–7672.

242. Pastorin G., Wu W., Wieckwski S., Briand J.P., Kostarelos K., Prato M., Bianco A. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun., 2006, 11, P. 1182–1184.

243. Kateb B., Yamamoto V., Alizadeh D., Zhang L., Manohara H.M., Bronikowski M.J., Badie B. Multi-walled carbon nanotube (MWCNT) synthesis, preperetion, labeling, and functionalization. Immunotherapy of Cancer, Methods in Molecular Biology, 2010, 651, P. 307–317.

244. Garcia B.O., Kharissova O.V., Rasika Dias H.V., Servando Aguirre T.F., Salinas Hernandez J. Nanocomposites with antibacterial properties using CNTs with magnetic nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 161–168.

245. Dastjerdi R., Montazer M. A review on the application of inorganic nanostructured materials in the modification of textiles: Focus on antimicrobial properties. Coll. Surf. B: Biointerfaces, 2010, 79, P. 5–18.

246. Bocharov G.S., Egin M.S., Eletskii A.V., Kuznetsov V.L. Filling carbon nanotubes with argon. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (1), P. 85–88.

247. Jakubek L.M., Marangoudakis S., Raingo J., Liu X., Lipscombe D., Hurt R.H. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomater., 2009, 30, P. 6351–6357.

248. Foldvari M., Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed., 2008, 4(3), P. 183–200.

249. Cai D., Mataraza J.M., Qin Z.H., Huang Z., Huang J., Chiles T.C., Carnahan D., Kempa K., Ren Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods, 2005, 2, P. 449–454.

250. Turcheniuk K., Mochalin V.N. Biomedical Applications of Nanodiamond (Review). Nanotechnology, 2017, 28, P. 252001–252027.

251. Rosenholm J.M., Vlasov I.I., Burikov S.A., Dolenko T.A., Shenderova O.A. Nanodiamond Based Composite Structures for Biomedical Imaging and Drug Delivery (Review). J. Nanosci. Nanotechnol., 2015, 15, P. 959–971.

252. Kulvelis Y.V., Shvidchenko A.V., Aleksenskii A.E., Yudina E.B., Lebedev V.T., Shestakov M.S., Dideikin A.T., Khozyaeva L.O., Kuklin A.I., Gy T., Rulev M.I., Vul A.Y. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly (vinylpyrrolidone). Diamond and Related Mater., 2018, 87, P. 78–89.

253. Girard H., Pager V., Simic V., Arnault J.C. Peptide nucleic acid nanodiamonds: Covalent and stable conjugates for DNA targeting. RSC Adv., 2014, 4, P. 3566–3572.

254. Mochalin V.N., Shenderova O., Ho D., Gogotsi Y. The Properties and Applications of Nanodiamonds. Nature Nanotechnology, 2011, 7(1), P. 11–23.

255. Bokarev A.N., Plastun I.L. Possibility of drug delivery due to hydrogen bonds formation in nanodiamonds and doxorubicin: molecular modeling. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 370–377.

256. Giammarco J., Mochalin V.N., Haeckel J., Gogotsi Y. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J. Colloid Interface Sci., 2016, 468, P. 253–261.

257. Vervald E.N., Laptinskiy K.A., Vlasov I.I., Shenderova O.A., Dolenko T.A. DNA nanodiamond interactions influence on fluorescence of nanodiamonds. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 64–66.

258. Schimke M., Steinmuller-Nethl D., Kern J., Kr ¨ uger A., Lepperdinger G. Biofunctionalization of nano-scaled diamond particles for use in ¨ bone healing and tissue engineering. Experimental Gerontology, 2015, 68, P. 100.

259. Chen M., Pierstorff E.D., Li Sh-Y., Lam R., Huang H., Osawa E., Ho D. Nanodiamond-mediated delivery of water-insoluble therapeutics. ASC Nano, 2009, 7(3), P. 2012–2022.

260. Solomatin A.S., Yakovlev R.Yu., Efremenkova O.V., Sumarukova I.G., Kulakova I.I., Lisichkin G.V. Antibacterial activity of Amikacin immobilized detonation nanodiamond. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(4), P. 531–534.

261. Danilenko V.V. On the History of the Discovery of Nanodiamond Synthesis. Physics of the Solid State, 2004, 46(4), P. 595–599.

262. Vul A.Y., Dideikin A.T., Alexenskii A.E., Baidakova M.V. Detonation nanodiamonds: Synthesis, Properties and Applications. Chapter 2. In: Nanodiamond. Ed. Williams O.A. Published by the Royal Society of Chemistry, Cambridge, 2014, P. 27-48.

263. Bondar’ V.S., Puzyr’ A.P. Nanodiamonds for Biological Investigations. Physics of the Solid State, 2004. 46(4), P. 716–719.

264. Tomchuk O., Volkov D., Bulavin L., Rogachev A., Proskurnin M., Korobov M., Avdeev M. Structural characteristics of aqueous dispersions of detonation nanodiamond and their aggregate fractions as revealed by small-angle neutron scattering J. Phys. Chem. C, 2015, 119(1), P. 794– 802.

265. Kulakova I.I. Surface Chemistry of Nanodiamonds. Phys. Solid State, 2004, 46(4), P. 636–643.

266. Dideikin A.T., Aleksenskii A.E., Baidakova M.V., Brunkov P.N., Brzhezinskaya M., Davydov V.Y., Levitskii V.S., Kidalov S.V., Kukushkina Y.A., Kirilenko D.A., Shnitov V.V., Shvidchenko A.V., Senkovskiy B.V., Shestakov M.S., Vul A.Y. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon, 2017, 122, P. 737–745.

267. Greiner N.R., Phillips D.S., Johnson J.D., Volk F. Diamonds in detonation soot. Nature, 1988, 333, P. 440–442.

268. Xu K., Xue Q. A New Method for Deaggregation of Nanodiamond from Explosive Detonation: Graphitization–Oxidation Method. Phys. Solid State, 2004, 46(4), P. 649–650.

269. Vervald A.M., Burikov S.A., Vlasov I.I., Shenderova O.A., Dolenko T.A Interactions of nanodiamonds and surfactants in aqueous suspensions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 49–51.

270. Zhang Q., Mochalin V.N., Neitzel I., Knoke I.Y., Han J., Klug C.A., Zhou J.G., Lelkes P.I., Gogotsi Y. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomater., 2011, 32(1), P. 87–94.

271. Bobrysheva I.V., Kashchenko S.A. Histology, Cytology, Embryology: Textbook, Knowledge, Lugansk: 2011, 529 p.

272. Vasudeva N., Mishra S. Inderbir Singh’s Textbook of Human Histology with Colour Atlas and Practical Guide. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, 2014, 439 p.

273. Bykov V.L. Special Histology of Human: Textbook. St. Petersburg: SOTIS, 1999, 301 p.

274. Krause W.J. Krause‘s Essential Human Histology. Univ. Missouri Columbia, 2005, 315 p. (https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/11238/KrausesEssentialHuman.pdf?sequence=1&isAllowed=y).

275. Membrino M.A. Transdermal Delivery of Therapeutic Compounds by Iontophoresis. University of Florida, 2002, 283 p.

276. Scheuplein R.J. Mechanism of Percutaneous Absorption: II. Transient Diffusion and the Relative Importance of Various Routes of Skin Penetration. J. Investigative Dermatol., 1967, 48(1), P. 79–88.

277. Methods in Molecular Biology. Permeability Barrier: Methods and Protocols. Ed. Turksen K., Totowa, NJ: Humana Press, 2011, 439 p.

278. Zesch A., Schaefer H. Penetrationskinetik von radiomarkiertem Hydrocortison aus verschiedenartigen Salbengrundlagen in die menschliche Haut II. In vivo. Archives Dermatol. Res., 1975, 252(4), P. 245–256.

279. Schaefer H., Zesch A., Stuttgen G. ¨ Skin Permeability. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, 896 p.

280. Kuznetsova E.G., Ryzhikova V.A., Salomatina L.A., Sevastianov V.I. Transdermal Drug Delivery and Methods to Enhance It. Russ. J. Transplant. Artificial Organs, 2016, 18(2), P. 152–162.

281. Asbrill C.S., El-Kattan A.F., Marchiniak B. Enchancement of transdermal drug delivery: chemical and physical approaches. Crit. Rev. Ther. Drug Carrier Syst., 2000, 17(6), P. 612–658.

282. Paudel K.S., Milewski M., Swadley C.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv., 2010, 1(1), P. 109–131.

283. Hupfeld S., Gravem H. Transdermal therapeutic systems for drug administration. Tidsskr. Nor. Laegeforen, 2009, 129(6), P. 532–533.

284. Sugino M., Todo H., Sugibayashi K. Skin permeation and transdermal delivery systems of drugs: history to overcome barrier function in the stratum corneum. Yakugaku Zasshi, 2009, 129(12), P. 1453–1458.

285. Heather Benson A.E. Transdermal Drug Delivery: Penetration Enhancement Techniques. Current Drug Deliv., 2005, 2, P. 23–33.

286. Moskvin S.V., Minenkov A.A. The mechanism of transcutaneous drug transfer assisted by laserophoresis. Klin. Dermatol. Venerol., 2010, 5, P. 78–83.

287. Polat B.E., Figueroa P.L., Blankschtein D., Langer R. Transport Pathways and Enhancement Mechanisms within Localized and NonLocalized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate. J. Pharm. Sci., 2011, 100(20), P. 512–529.

288. Naegel A., Heisig M., Wittum G. Detailed Modeling of Skin Penetration An Overview. Advanced Drug Delivery Reviews, 2013, 65(2), P. 191–207.

289. Guy R.H., Hadgraft J., Maibach H.I. A Pharmacokinetic Model for Percutaneous Absorption. International Journal of Pharmaceutics, 1982, 11(2), P. 119–129.

290. Frasch H.F., Barbero A.M. Application of Numerical Methods for Diffusion-Based Modeling of Skin Permeation. Advanced Drug Delivery Reviews, 2013, 65(20), P. 208–220.

291. Mitragotri S., Anissimov Y.G., Bunge A.L., Frasch H.F., Guy R.H., Hadgraft J., Kasting G.B., Lane M.E., Roberts M.S. Mathematical Models of Skin Permeability: An Overview. International Journal of Pharmaceutics, 2011, 418(1), P. 115–129.

292. Anissimov Y.G., Roberts M.S. Diffusion Modeling of Percutaneous Absorption Kinetics. 1. Effects of Flow Rate, Receptor Sampling Rate, and Viable Epidermal Resistance for a Constant Donor Concentration. Journal of Pharmaceutical Sciences, 1999, 88(11), P. 1201–1209.

293. Lindstrom T.F., Ayres J.W. Diffusion Model for Drug Release from Suspensions II: Release to a Perfect Sink. Journal of pharmaceutical sciences, 1977, 66(5), P. 662–668.

294. Todo H., Oshizaka T., Kadhum W., Sugibayashi K. Mathematical Model to Predict Skin Concentration after Topical Application of Drugs. Pharmaceutics, 2013, 5(4), P. 634–651.

295. Guy R.H., Hadgraft J., Maibach H.I. A Pharmacokinetic Model for Percutaneous Absorption. International Journal of Pharmaceutics, 1982, 11(2), P. 119–129.

296. Guy R.H., Hadgraft J. Transdermal Drug Delivery: A Simplified Pharmacokinetic Approach. Int. J. Pharm., 1985, 24(2–3), P. 267–274.

297. Riegelman S. Pharmacokinetics; Pharmacokinetic Factors Affecting Epidermal Penetration and Percutaneous Absorption. Clinical Pharmacology & Therapeutics, 1974, 16(5, part 2), P. 873–883.

298. Tojo K. Mathematical Modeling of Transdermal Drug Delivery. Journal of Chemical Engineering of Japan, 1987, 20(3), P. 300–308.

299. Vieth W.R., Howell J.M., Hsieh J.H. Dual Sorption Theory. Journal of Membrane Science, 1976, 1, P. 177–220.

300. Chandrasekaran S., Michaels A., Campbell P., Shaw J. Scopolamine Permation through Human Skin in Vitro. AIChE Journal, 1976, 22(5), P. 828–832.

301. Chandrasekaran S.K., Bayne W., Shaw J.E. Pharmacokinetics of Drug Permeation through Human Skin. Journal of pharmaceutical sciences, 1978, 67(10), P. 1370–1374.

302. Shen J., Kromidas L., Schultz T., Bhatia S. An in silico skin absorption model for fragrance materials. Food and Chemical Toxicology, 2014, 74, P. 164–176.

303. Flynn G. Physiochemical Determinants of Skin Absorption. In Principles of route-to-route extrapolation for risk assessment / Ed. Gerrity T.R., Henry C.J. New York: Elsevier, 1990, P. 93–127.

304. Barratt M. Quantitative Structure-Activity Relationships for Skin Permeability. Toxicology in Vitro, 1995, 9(1), P. 27–37.

305. Godin B., Touitou E. Transdermal Skin Delivery: Predictions for Humans from in Vivo, Ex Vivo and Animal Models. Advanced Drug Delivery Reviews, 2007, 59(11), P. 1152–1161.

306. Potts R.O., Guy R.H. Predicting Skin Permeability. Pharmaceutical Research, 1992, 9(5), P. 663–669.

307. Geinoz S., Guy R.H., Testa B., Carrupt P.-A. Quantitative Structure-Permeation Relationships (QSPeRs) to Predict Skin Permeation: A Critical Evaluation. Pharmaceutical Research, 2004, 21(1), P. 83–92.

308. Enback J., Laakkonen P. Tumour-homing peptides: tools for targeting, imaging and destruction. ¨ Biochemical Society Transactions, 2007, 35(4), P. 780–783.

309. Un F., Zhou B., Yen Y. The Utility of Tumor-specifically Internalizing Peptides for Targeted siRNA Delivery into Human Solid Tumors. Anticancer Research, 2012, 32, P. 4685–4690.

310. Rihova B. Targeting of Drugs to Cell Surface Receptors. Critical Reviews in Biotechnology, 1997, 17(2), P. 149–169.

311. Ivonin A.G., Pimenov E.V., Oborin V.A., Devrishov D.A., Kopylov S.N. Directed Transport of Drugs: Current State and Prospects. Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences, 2012, 1(9), P. 46–55.

312. Guillemard V., Uri Saragovi N. Prodrug chemotherapeutics bypass p-glycoprotein resistance and kill tumors in vivo with high efficacy and target-dependent selectivity. Oncogene, 2004, 23(20), P. 3613–3621.

313. Baselga J. A review of EGFR targeted therapy. Clin. Adv. Hemato.l Oncol., 2003, 1(4), P. 218–219.

314. Sharman W.M., van Lier J.E., Allen C.M. Targeted photodynamic therapy via receptor mediated delivery systems. Adv. Drug Deliv. Rev., 2004, 56(1), P. 53–76.

315. Manoharan M. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucieic Acid Drug Dev., 2002, 12(2), P. 103–128.

316. Stern M., Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit. Rev. Oncol. Hematol., 2005, 54(1), P. 11–29.

317. Casi G., Neri D. Antibody-drug conjugates: basic concepts, examples and future perspectives. J. Cont. Release, 2012, 161(2), P. 422–428.

318. Wei, C., Su, D., Wang, J., Jian W., Zhang D. LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples. Curr. Pharmacol. Rep., 2018, 4(1), P. 45–63.

319. Bareford L.M., Swaan P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug. Deliv. Rev., 2007, 59(8), P. 748–758.

320. Marsh M., McMahon H.T. The structural era of endocytosis. Science, 1999, 285(5425), P. 215–220.

321. Mousavi S.A., Malerod L., Berg T., Kjeken R. Clathrin-dependent endocytosis. Biochem. J., 2004, 377(1), P. 1–16.

322. Rodemer C., Haucke V. Clathrin/AP-2-dependent endocytosis: a novel playground for the pharmacological toolbox? Handb. Exp. Pharmacol., 2008, 186, P. 105–122.

323. Krippendorff B.F., Kuester K., Kloft C., Huisinga W. Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J. Pharmacokinet. Pharmacodyn., 2009, 36(3), P. 239–260.

324. Khalil I.A., Kogure K., Akita H., Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev., 2006, 58(1), P. 32–45.

325. Rawat A., Vaidya B., Khatri K., Goyal A.K., Gupta P.N., Mahor S., Paliwal R., Rai S., Vyas S.P. Targeted intracellular delivery of therapeutics: an overview. Die Pharmazie, 2007, 62(9), P. 643–658.

326. Bildstein L., Dubernet C., Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv. Drug. Deliv. Rev., 2011, 63(1-2), P. 3–23.

327. Yu S., Li A., Liu Q., Li T., Yuan X., Han X., Wu K. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J. Hematol. Oncol., 2017, 10(1), P. 1–13.

328. Rosenkranz A.A,, Ulasov A.V., Slastnikova T.A., Khramtsov Y.V., Sobolev A.S. Use of Intracellular Transport Processes for Targeted Drug Delivery into a Specified Cellular Compartment. Biochem. (Moscow), 2014, 79(9), P. 928–946.

329. Pauling L. The Nature of the Chemical Bond, 3-d edition. Itaca, New York, Cornell University Press, London, Oxford University Press,1960, 643 p.

330. Yamase T. Polyoxometalates for Molecular Devices: Antitumor Activity and Luminescence. Molecular Eng., 1993, 3(1–3), P. 241–262.

331. Yamase T., Fujita H., Fukushima K. Medical Chemistry of Polyoxometalates. Part 1. Potent Antitumor Activity of Polyoxomolybdates on Animal Transplantable Tumors and Human Cancer Xenograft. Inorg. Chim. Acta, 1988, 151(1), P. 15–18.

332. Yang H.-K., Cheng Y.-X., Su M.-M., Xiao Y., Hu M.-B., Wang W., Wang Q. Polyoxometalate–biomolecule Conjugates: A New Approach to Create Hybrid Drugs for Cancer Therapeutics. Bioorganic & Med. Chem. Lett., 2013, 23(5), P. 1462–1466.

333. Bijelic A., Aureliano M., Rompel A. Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. Angew. Chem. Int. Ed., 2019, 58, P. 2980–2999.

334. Datta L.P., Mukherjee R., Subharanjan Biswas S., Das T.K. Peptide-Based Polymer-Polyoxometalate Supramolecular Structure with a Differed Antimicrobial Mechanism. Langmuir, 2017, 33, P. 14195–14208.

335. Muller A., Krickemeyer E., B ¨ ogge H., Schmidtmann M., Peters F. Organizational Forms of Matter: An Inorganic Super Fullerene and ¨ Keplerate Based on Molybdenum Oxide. Angew. Chem. Int. Ed., 1998, 37(24), P. 3359–3363.

336. Muller A., Gouzerh P. From Linking of Metal-Oxide Building Blocks in a Dynamic Library to Giant Clusters with Unique Properties and ¨ towards Adaptive Chemistry. Chem. Soc. Rev., 2012, 41(22), P. 7431–7463.

337. Awada M., Floquet S., Marrot J., Haouas M., Morcillo S.P., Bour Ch., Gandon V., Coeffard V., Greck Ch., Cadot E. Synthesis and Characterizations of Keplerate Nanocapsules Incorporating L- and D-Tartrate Ligands. J. Clust. Sci., 2017, 28(2), P. 799–812.

338. Ostroushko A.A., Adamova L.V., Eremina E.V., Grzhegorzhevskii K.V. Interaction between nanocluster polyoxometallates and lowmolecular-weight organic compounds. Russ. J. Phys. Chem. A, 2015, 89(8), P. 1439–1444.

339. Tonkushina M.O., Gagarin I.D., Grzhegorzhevskii K.V., Ostroushko A.A. Electrophoretic Transfer of Nanocluster Polyoxometalate Mo72Fe30 Associates through the Skin Membrane. Bull. Ural Med. Acad. Sci., 2014, 3(49), P. 59–61.

340. Ostroushko A.A., Grzhegorzhevskii K.V. Electric Conductivity of Nanocluster Polyoxomolybdates in the Solid State and Solutions. Russ. J. Phys. Chem. A, 2014, 88(6), P. 1008–1011.

341. Muller A., Shah S. Q. N., B ¨ ogge H., Schmidtmann M., Sarkar S., K ¨ ogerler P., Hauptfleisch B., Trautwein A.X, Sch ¨ onemann V. Archimedean ¨ Synthesis and Magic Numbers:“Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew. Chem. Int. Ed., 1999, 38(21), P. 3238–3241.

342. Ostroushko A.A., Tonkushina M.O., Korotaev V.Yu., Prokof’eva A.V., Kutyashev I.B., Vazhenin V.A., Danilova I.G., Men’shikov S.Yu. Stability of the Mo72Fe30 Polyoxometalate Buckyball in Solution. Russ. J. Inorg. Chem., 2012. 57(9), P. 1210–1213.

343. Ostroushko A.A., Tonkushina M.O. Destruction of Molybdenum Nanocluster Polyoxometallates in Aqueous Solutions. Russ. J. Phys. Chem. A, 2015, 89(3), P. 443–446.

344. Ostroushko A.A., Danilova I.G., Gette I.F., Medvedeva S.Yu., Tonkushina M.O., Prokofieva A.V., Morozova M.V. Study of Safety of Molybdenum and Iron-Molybdenum Nanocluster Polyoxometalates Intended for Targeted Delivery of Drugs. J. Biomat. Nanobiotechnol., 2011, 2(5), P. 557–560.

345. Ostroushko A.A., Gette I.F., Medvedeva S.Y., Danilova I.G., Mukhlynina E.A., Tonkushina M.O., Morozova M.V. Study of Acute and Subacute Action of Iron-Molybdenum Nanocluster Polyoxometalates. Nanotechnologies in Russia, 2013, 8(9–10), P. 672–677.

346. Gette I.F., Medvedeva S.Yu., Ostroushko A.A. Condition of the Immune System Organs and Blood Leucocytes in Rats after the Exposition of Iron-Molybdenum Polyoxometalates. Russian J. of Immunol., 2017, 11(2),P. 280–282

347. Danilova I.G., Gette I.F., Medvedeva S.Y., Mukhlynina E.A., Tonkushina M.O., Ostroushko A.A. Changing the Content of Histone Proteins and Heat-Shock Proteins in the Blood and Liver of Rats after the Single and Repeated Administration of Nanocluster Iron-Molybdenum Polyoxometalates. Nanotechnologies in Russia, 2015, 10(9–10), P. 820–826.

348. Liu T., Imber B., Diemann E., Liu G., Cokleski K., Li H., Chen Z., Muller A. Deprotonations and Charges of Well-Defined Mo ¨ 72Fe30 Nanoacids Simply Stepwise Tuned by pH Allow Control/Variation of Related Self-Assembly Processes. J. Am. Chem. Soc., 2006, 128(49), P. 15914–15920.

349. Ostroushko A.A., Gette I.F., Danilova I.G., Mukhlynina E.A., Tonkushina M.O., Grzhegorzhevskii K.V. Studies on the Possibility of Introducing Iron–Molybdenum Buckyballs into an Organism by Electrophoresis. Nanotechnologies in Russia, 2014, 9(9–10), P. 586–591.

350. Ostroushko A.A., Danilova I.G., Gette I.F., Tonkushina M.O., Behavior of Associates of Keplerate-Type Porous Spherical Mo72Fe30 Clusters with Metal Cations in Electric Field-Driven Ion Transport. Russ. J. Inorg. Chem., 2015, 60(4), P. 500–504.

351. Ostroushko A.A., Grzhegorzhevskii K.V., Bystrai G.P., Okhotnikov S.A. Modeling the Processes of Electrophoretic Transfer for Spherical Nanoclusters of Iron–Molybdenum Polyoxometalates. Russ. J. Phys. Chem. A, 2015, 89(9), P. 1638–1641.

352. Michelis F.V., Delitheos A., Tiligada E. Molybdate modulates mitogen and cyclosporin responses of human peripheral blood lymphocytes. J. Trace Elements in Med. and Biol., 2011, 25, P. 138–142.

353. Muller A., Sarkar S., Shah S.Q.N., B ¨ ogge H., Schmidtmann M., Sarkar S., K ¨ ogerler P., Hauptfleisch B., Trautwein V.X., Sch ¨ unemann V. ¨ Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew. Chem. Int. Ed. Engl., 1999, 38(21), P. 3238–3241.

354. Ostroushko A.A., Tonkushina M.O., Martynova N.A. Mass and charge transfer in systems containing nanocluster molybdenum polyoxometallates with a fullerene structure. Russ. J. Phys. Chem. A, 2010, 84(6), P. 1022–1027.

355. Gagarin I.D., Kulesh N.A., Tonkushina M.O., Vlasov D.A., Ostroushko A.A. Physico-chemical aspects of electrotransport of keplerate-type nanocluster polyoxoanions in native membranes. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, 2017, 9, P. 147–152.

356. Bystrai G.P. Thermodynamics of irreversible processes in open systems. (Termodinamika neobratimykh processov w otkrytykh sistemakh), Moscow - Izhevsk: Research Center of Regular and Random Dynamics, 2011. 264 pp. (in Russian)

357. Prigogine I. Introduction to Thermodynamics of Irreversible Processes, 3-rd Ed., Interscience Publishers, a division of John Wiley & Sons New York, London, Sydney, 1967, 146 p.

358. Kahaner D., Moler C., Nash S. Numerical Methods and Software, Prentice Hall, 1989, 495 p.

359. Kamont Z., Czernous W. Implicit Difference Methods for Hamilton-Jacobi Functional Differential Equations. Numerical Anal. Appl., 2009, 2(1), P. 46–57.

360. Ardelyan I.V. On the use of iterative nethods when realizing implicit difference schemes of two-dimensional magnetohydrodynamics. USSR Comp. Mathem. Mathem. Phys., 1983, 23(6), P. 84–90.

361. Czernous W. Implicit Difference Methods for Hamilton-Jacobi Functional Differential Equations. Numerical Anal. Appl., 2009, 2(1), P. 46– 57.

362. Gu X.M., Huang T.Z., Ji C.C., Carpentieri B., Alikhanov A.A. Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. J. Sci. Comp., 2017, 72(3), P. 957–985.

363. Shikhova S.V. The Genotoxic Effect of Aminopterin and Methotrexate on Fertility of Several Lines Wild Type of Drosophila Melanogaster. Proceedings of Voronezh State University. Series Chem., Biol., Pharm., 2017, 4, P. 93–98.

364. Ostroushko A.A., Gagarin I.D., Grzhegorzhevskii K., Gette I.F., Vlasov D.A., Ermoshin F.A., Antosyuk O.N., Shikhova S.V., Danilova I.G. New Aspects of Studying of Physico-chemical Propertis of Nanocluster Polyoxomolybdates as Perspective Materials for Biomedicine. Conferences Cluster 2018. X International Conference “Kinetics and mechanism of crystallization”. July 1-6, 2018, Suzdal, Russia. P. 29–30.

365. Shikhova S.V., Grzhegorzhevskii K.V., Gagarin I.D. Assessment of address delivery efficiency of aminopterin by means of iron-molybdenum nanocluster polyoxometalat with use of the biotest. Transactions of the XVth All-Russian scientific and practical Conference with international participation “Biodiagnostics of a Condition of Natural and Natural-Technogenic Systems”. Kirov. 4-6 Dec. 2017. Kirov: Vyatka State University, 2017, P. 198–202.

366. Ostroushko A.A., Safronov A.P., Tonkushina M.O., Korotaev V.Yu., Barkov A.Yu. Interaction between Mo132 Nanocluster Polyoxometalate and Solvents. Russ. J. Phys. Chem. A, 2014, 88(12), P. 2179–2182.

367. Ostroushko A.A., Gagarin I.D., Tonkushina M.O., Grzhegorzhevskii K.V., Danilova I.G., Gette I.F., Kim G.A. Iontophoretic Transport of Associates Based on Porous Keplerate-Type Cluster Polyoxometalate Mo72Fe30 and Containing Biologically Active Substances. Russ. J. Phys. Chem. A, 2017, 91(9), P. 1811–1815.

368. Timin A.S., Solomonov A.V., Musabirov I.I. Sergeev S.N., Ivanov S.P., Rumyantsev E.V., Goncharenko A. Immobilization of bovine serum albumin onto porous poly (vinylpyrrolidone)-modified silicas. Ind. Eng. Chem. Res., 2014, 53(35), P. 13699–13710.

369. Kadajji V.G., Betageri G.V. Water Soluble Polymers for Pharmaceutical Applications. Polymers, 2011, 3, P. 1972–2009.

370. Ostroushko A.A., Safronov A.P., Tonkushina M.O. Thermochemical Study of Interaction between Nanocluster Polyoxomolybdates and Polymers in Film Compositions. Russ. J. Phys. Chem. A, 2014, 88(2), P. 295–300.

371. Bijelic A., Rompel A. The use of polyoxometalates in protein crystallography – An attempt to widen a well-known bottleneck. Coord. Chem. Rev., 2015, 299, P. 22–38.

372. Gagarin I., Tonkushina M., Ostroushko A. Stabilization of keplerate-type spheric porous nanocluster polyoxometalate Mo72Fe30. 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018, P. 41–44.

373. Cedervall T., Lynch I., Lindman S., Berggard T., Thulin E., Nilsson H., Dawson K.A., Linse S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA, 2007, 104, P. 2050– 2055.

374. Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts Proc. Natl Acad. Sci. USA, 2008, 105, P. 14265–14270.

375. Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V. Quantitative study of protein coronas on gold nanoparticles with different surface modifications. ACS Nano, 2010, 4, P. 3623–3632.

376. Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem. Soc. Rev., 2015, 44 P. 6094–6121.

377. Walkey C.D., Olsen J.B., Song F., Liu R., Guo H., Olsen D.W.,Cohen Y., Emili A., Chan W.C. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 2014, 8 P. 2439–2455.


Review

For citations:


Ostroushko A.A., Gagarin I.D., Danilova I.G., Gette I.F. The use of nanocluster polyoxometalates in the bioactive substance delivery systems. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(3):318-349. https://doi.org/10.17586/2220-8054-2019-10-3-318-349

Views: 78


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)