Phase equilibria and materials in the TiO2–SiO2–ZrO2 system: a review
https://doi.org/10.17586/2220-8054-2021-12-6-711-727
Аннотация
This paper analyzes the available data on phase equilibria in the TiO2–SiO2–ZrO2 system. The advantages of specialized databases and software systems for the analysis of information on phase equilibria are pointed. Phase diagrams are kind of a roadmap for the design of materials. As shown in the review, nanomaterials are no exception to this. Data on phase equilibria, such as eutectic points, solubility limits, binodal and spinodal curves, make it possible to predict the possibility of the formation of nanoscale structures and materials based on them. In its turn during the transition to the nanoscale state, the mutual component solubility, the temperature of phase transformation may change significantly, and other features may become observable. This provides additional variability when choosing compositions and material design based on the phases of a given system. As an example, for design of nuclear fuel assemblies that are tolerant to severe accidents at nuclear power plants, mixed carbides (so-called MAX-phases) are considered as one of the most promising options as nanoscale layers on fuel cladding. It is suggested that the materials of the TiO2–SiO2–ZrO2 system, which are the product of oxidation of some MAX-phases, can serve as an inhibitor of their further corrosion. Ensuring the stability of materials based on MAX-phases expands their prospects in nuclear power. This requires comprehensive information about phase equilibria and formation conditions of nanostructured states in the analyzed system.
Ключевые слова
Об авторах
S. KirillovaРоссия
V. Almjashev
Россия
V. Stolyarova
Россия
Список литературы
1. Retention of Molten Core Materials in Water-Cooled Reactors (RASPLAV and MASCA International Projects), Ed. by V.G. Asmolov, A.Yu. Rumyantsev, and V.F. Strizhov, Moscow, Rosenergoatom, 2018, 576 p. [in Russian].
2. Gonzalez-Julian J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc., 2021, 104(2), P. 659–690.
3. Zhang Z., Duan X., Jia D., Zhou Y., van der Zwaag S. On the formation mechanisms and properties of MAX phases: A review. J. Eur. Ceram. Soc., 2021, 41(7), P. 3851–3878.
4. Medvedeva N.I., Enyashin A.N., Ivanovskii A.L. Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2. J. Struct. Chem., 2011, 52(4), P. 785–802.
5. Arkundato A., Hasan M., Pramutadi A., Rivai A.K., Su’ud Z. Thermodynamics and Structural Properties of Ti3SiC2 in Liquid Lead Coolant. J. Phys. Conf. Ser., 2020, 1493, Article 012026.
6. Tretyakov Yu.D. Self-organisation processes in the chemistry of materials. Russ. Chem. Rev., 2003, 72(8), P. 651–679.
7. Gleiter H. Nanostructured materials: Basic concepts and microstructure. Acta Mater., 2000, 48(1), P. 1–29.
8. Ozin G.A., Arsenault A.C., Cademartiri L. Nanochemistry: A Chemical Approach to Nanomaterials, 2nd ed. Cambridge: Royal Society of Chemistry, 2009, 820 p.
9. Ivanov V.V., Talanov V.M. Principle of modular building of nanostructures: the information codes and the combinatorial design. Nanosyst.: Phys. Chem. Math., 2010, 1(1), P. 72–107 [in Russian].
10. Galakhov F.Ya., Varshal B.G. On the causes of liquation in simple silicate systems. Proceedings of the First All-Union Symposium “Liquidation Phenomena in Glass”, Leningrad, April 16–18, 1968, Leningrad: “Nauka”, 1969, P. 6–11 [in Russian].
11. Porai-Koshits E.A., Averyanov V.I. On the phenomena of primary and secondary immiscibility in glasses. Proceedings of the First All-Union Symposium “Liquidation Phenomena in Glass”, Leningrad, April 16–18, 1968, Leningrad, Nauka, 1969, P. 26–30 [in Russian].
12. Galakhov F.Ya. Microliquation and Its Image on the Binary System State Diagram. Bull. Acad. Sci. USSR, Chem. Ser., 1964, 8, P. 1377–1383 [in Russian].
13. Andreev N.S., Mazurin O.V., Porai-Koshits E.A., Roslova G.P., Filippovich V.N. Phenomena of liquation in glasses. Ed. M.M. Schultz, Leningrad, Nauka, 1974, 217 p. [in Russian].
14. Hudon P., Baker D.R. The nature of phase separation in binary oxide melts and glasses. I. Silicate systems. J. Non-Cryst. Solids, 2002, 303(3), P. 299–345.
15. Hudon P., Baker D.R. The nature of phase separation in binary oxide melts and glasses. II. Selective solution mechanism. J. Non-Cryst. Solids, 2002, 303(3), P. 346–353.
16. Hudon P., Baker D.R. The nature of phase separation in binary oxide melts and glasses. III. Borate and germanate systems. J. Non-Cryst. Solids, 2002, 303(3), P. 354–371.
17. Mriglod I.M., Patsagan O.V., Melnik R.S. Metastable liquation processes in multicomponent glass-forming systems: a review of experimental and theoretical results; phase diagrams with metastable segregation. Preprint IFCS NAS Ukraine, ICMP-03-15U, 2003, 22 p. [In Ukrainian].
18. Kundig A.A., Ohnuma M., Ping D.H., Ohkubo T., Hono K. In situ formed two-phase metallic glass with surface fractal microstructure.¨ Acta Mater., 2004, 52(8), P. 2441–2448.
19. Chang H.J., Yook W., Park E.S., Kyeong J.S., Kim D.H. Synthesis of metallic glass composites using phase separation phenomena. Acta Mater., 2010, 58(7), P. 2483–2491.
20. Delitsyn L.M. Liquid immiscibility phenomena in magmatic systems, Moscow, GEOS, 2010, 222 p.
21. Blinova I.V., Gusarov V.V., Popov I.Yu. “Almost quasistationary” approximation for the problem of solidification front stability. Z. Angew. Math. Phys., 2009, 60(1), P. 178–188.
22. Eliseev A.A., Lukashin A.V. Functional nanomaterials. Ed. Yu.D. Tretyakov. Moscow, FIZMATLIT, 2010, 456 p.
23. Trusov L.A., Zaitsev D.D., Kazin P.E., Tret’yakov Yu.D., Jansen M. Preparation of Magnetic Composites through SrO–Fe2O3–Al2O3–B2O3 Glass Crystallization. Inorg. Mater., 2009, 45(6), P. 689–693.
24. Kazin P.E., Trusov L.A., Zaitsev D.D., Tret’yakov Yu.D. Glass Crystallization Synthesis of Ultrafine Hexagonal M-Type Ferrites: Particle Morphology and Magnetic Characteristics. Russ. J. Inorg. Chem., 2009, 54(14), P. 2081–2090.
25. Kazin P.E., Trusov L.A., Kushnir S.E., Yaroshinskaya N.V., Petrov N.A., Jansen M. Hexaferrite Submicron and Nanoparticles with Variable Size and Shape via Glass-Ceramic Route. J. Phys. Conf. Ser., 2010, 200(7), Article 072048.
26. Khodakovskaya R.Ya. Chemistry of titanium-containing glasses and sitalls. Moscow, Khimiya, 1978, 288 p. [in Russian].
27. von Olleschik-Elbheim L., el Baya A., Schmidt M.A., Zhu D.-M., Kosugi T. Thermal conductivity of GeO2–SiO2 and TiO2–SiO2 mixed glasses. J. Non-Cryst. Solids, 1996, 202(1), P. 88–92.
28. You H., Nogami M. Persistent spectral hole burning of Eu3+ ions in TiO2–SiO2 glass prepared by sol-gel method. J. Alloys Compd., 2006, 408–412, P. 796–799.
29. Lebedeva G.A. Formation of a liquation structure in titanium-containing aluminosilicate glasses. Glass and Ceramics, 2008, 9, P. 25–28 [in Russian].
30. Scannell G., Koike A., Huang L. Structure and thermo-mechanical response of TiO2–SiO2 glasses to temperature. J. Non-Cryst. Solids, 2016, 447, P. 238–247.
31. Romy Dwipa Y. Away, Chika Takai-Yamashita, Takayuki Ban, Yutaka Ohya. Photocatalytic properties of TiO2–SiO2 sandwich multilayer films prepared by sol-gel dip-coating. Thin Solid Films, 2021, 720, Article 138522.
32. Yorov K.E., Kolesnik I.V., Romanova I.P., Mamaeva Yu.B., Lermontov S.A., Kopitsa G.P., Baranchikov A.E., Ivanov V.K. Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications. J. Supercrit. Fluid., 2021, 169, Article 105099.
33. Sun S., Ding H., Wang J., Li W., Hao Q. Preparation of a microsphere SiO2/TiO2 composite pigment: The mechanism of improving pigment properties by SiO2. Ceram. Int., 2020, 46(14), P. 22944–22953.
34. Llamas S., Ponce Torres A., Liggieri L., Santini E., Ravera F. Surface properties of binary TiO2–SiO2 nanoparticle dispersions relevant for foams stabilization. Colloids Surf. A Physicochem. Eng. Asp., 2019, 575, P. 299–309.
35. Ren Y., Li W., Cao Z., Jiao Y., Xu J., Liu P., Li S., Li X. Robust TiO2 nanorods-SiO2 core-shell coating with high-performance self-cleaning properties under visible light. Appl. Surf. Sci., 2020, 509, Article 145377.
36. Wang T., Li Y., Wu W.-T., Zhang Y., Wu L., Chen H. Effect of chiral-arrangement on the solar adsorption of black TiO2–SiO2 mesoporous materials for photodegradation and photolysis. Appl. Surf. Sci., 2021, 537, Article 148025.
37. Bao Y., Guo R., Gao M., Kang Q., Ma J. Morphology control of 3D hierarchical urchin-like hollow SiO2@TiO2 spheres for photocatalytic degradation: Influence of calcination temperature. J. Alloys Compd., 2021, 853, Article 157202.
38. Shabanova N.A., Popov V.V., Sarkisov P.D. Chemistry and technology of nanodispersed oxides. Moscow, Akademkniga, 2006, 309 p. [in Russian].
39. Ermilov P.I., Indeikin E.A., Tolmachev I.A. Pigments and pigmented paintwork materials. Leningrad, Khimiya, 1987, 200 p. [in Russian].
40. Titanium Dioxide (TiO2) and Its Applications. A volume in Metal Oxides. Edited by F. Parrino, L. Palmisano. Amsterdam, Elsevier, 2020, 702 p.
41. Rieke R. Melting Influence of Titanic Acid on Silica, Alumina, and Kaolin. Sprechsaal, 1908, 41, P. 405.
42. Umezu S., Kakiuchi F. Investigations on Iron Blast. Furnace Slags Containing Titanium. Nippon Kogyo Kwaishi, 1930, 46, P. 866–877.
43. Bogatzkii D.P. Investigation of the system TiO2–SiO2. Metallurgist, 1938, 11, P. 59–67 [in Russian].
44. Bunting E.N. Phase equilibria in the systems. TiO2, TiO2–SiO2, and TiO2–Al2O3. J. Res. Nat. Bur. Stand., 1933, 11(5), P. 719–725.
45. Ricker R.W., Hummel F.A. Reactions in the System TiO2–SiO2; Revision of the Phase Diagram. J. Amer. Ceram. Soc., 1951, 34(9), P. 271– 279.
46. DeVries R.C., Roy R., Osborn E.F. The System TiO2–SiO2. Trans. Brit. Ceram. Soc., 1954, 53(9), P. 525–540.
47. Kaufman L. Calculation of multicomponent ceramic phase diagrams. Physica B+C (Amsterdam), 1988, 150(1–2), P. 99–114.
48. Kubaschewski O., Alcock C.B. International Series on Materials Science and Technology, V. 24 (Metallurgical Thermochemistry), 5th ed. Oxford, United Kingdom: Pergamon Press, Elsevier Science Ltd., 1979, 449 p.
49. DeCapitani C., Kirschen M. A generalized multicomponent excess function with application to immiscible liquids in the system CaO–SiO2– TiO2. Geochim. Et Cosmochim. Acta, 1998, 62(23/24), P. 3753–3763.
50. Kirschen M., DeCapitani C., Millot F., Rifflet J.-C., Coutures J.-P. Immiscible silicate liquids in the system SiO2–TiO2–Al2O3. Eur. J. Mineral., 1999, 11, P. 427–440.
51. Don McTaggart G., Andrews A.I. Immiscibility Area in the System TiO2–ZrO2–SiO2. J. Am. Ceram. Soc., 1957, 40(5), P. 167–170.
52. Massazza F., Sirchia E. Il sistema MgO–SiO2–TiO2. La Chimica e l’industria, 1958, XL(5), P. 376–380.
53. Galakhov F.Ya., Areshev M.P., Vavilonova V.T., Aver’yanov V.I. Determination of the boundaries of metastable liquation in the silica part of the TiO2–SiO2 system. Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1974, 10(1), P. 179–180 [in Russian].
54. Saunders N., Miodownik A.P. CALPHAD (calculation of phase diagrams): a comprehensive guide. Pergamon materials series. Vol. 1, 1998, 479 p.
55. Kamaev D.N. High-temperature phase equilibria in TiO2–SiO2, ZrO2–Al2O3, ZrO2–SiO2, FeO–ZrO2–SiO2, Fe–Zr–Si–O systems: dissertation ... candidate of chemical sciences: 02.00.04. Chelyabinsk, 2005, 168 p. [in Russian].
56. Mikhailov G.G., Novolotskiy D.Ya. Thermodynamics of steel deoxidation. Moscow, Metallurgy, 1993, 114 p. [in Russian].
57. Kirillova S.A., Al’myashev V.I., Gusarov V.V. Phase Relationships in the SiO2–TiO2 System. Russ. J. Inorg. Chem., 2011, 56(9), P. 1464– 1471.
58. Kirillova S.A., Almjashev V.I., Gusarov V.V. Spinodal decomposition in the SiO2–TiO2 system and hierarchically organized nanostructures formation. Nanosyst.: Phys. Chem. Math., 2012, 3(2), P. 100–115 [in Russian].
59. Gurvich L.V., Iorish V.S., Chekhovskoi D.V., Yungman V.S. IVTANTHERMO – A Thermodynamical Database and Software System for the Personal Computer. User’s Guide. CRC Press, Inc., Boca Raton, 1993.
60. Hlava´c J. Melting temperatures of refractory oxides: Part I.ˇ Pure & Appl. Chem., 1982, 54(3), P. 681–688.
61. Chase Jr., M.W. NIST-JANAF Thermochemical Tables (Journal of Physical and Chemical Reference Data Monographs), 4th ed., Monograph No. 9. American Institute of Physics, 1998–2000, 1952 p.
62. Almjashev V.I., Gusarov V.V., Khabensky V.B., Bechta S.V., Granovsky V.S. Influence of the temperature difference at immiscibility liquids interface on their phase instability. OECD/NEA MASCA2 Seminar 2007, Cadarache, France, 11–12 October 2007, 2007, paper 3.3.
63. Boulay E., Nakano J., Turner S., Idrissi H., Schryvers D., Godet S. Critical assessments and thermodynamic modeling of BaO–SiO2 and SiO2–TiO2 systems and their extensions into liquid immiscibility in the BaO–SiO2–TiO2 system. CALPHAD, 2014, 47, P. 68–82.
64. Lu X., Jin Z. Thermodynamic assessment of the BaO–TiO2 quasibinary system. CALPHAD, 2000, 24(3), P. 319–338.
65. Stolyarova V.L., Lopatin S.I. Mass-spectrometric study of the vaporization and thermodynamic properties of components in the BaO–TiO2– SiO2 system. Glass Phys. Chem., 2005, 31(2), P. 132–137.
66. Zhang C., Ge X., Hu Q., Yang F., Lai P., Shi C., Lu W., Li J. Atomic scale structural analysis of liquid immiscibility in binary silicate melt: A case of SiO2–TiO2 system. J. Mater. Sci. Technol., 2020, 53, P. 53–60.
67. Von Wartenberg H., Gurr W. Schmelzdiagramme hochstfeuerfester Oxyde. III.¨ Z. Anorg. Allg. Chem., 1931, 196(1), P. 374–383.
68. Bussem W., Schusterius C., Ungewiss A. X-Ray Investigations of the Binary Systems TiO¨ 2–MgO, ZrO2–MgO, and ZrO2–TiO2. Ber. Dtsch. Keram. Ges., 1937, 18(10), P. 433–443.
69. Sowman H.G., Andrews A.I. A Study of the Phase Relations of ZrO2–TiO2 and ZrO2–TiO2–SiO2. J. Am. Ceram. Soc., 1951, 34(10), P. 298–301.
70. Coughanour L.W., Roth R.S., DeProsse V.A. Phase equilibrium relations in the systems lime-titania and zirconia-titania. J. Res. Natl. Bur. Stand. (U. S.), 1954, 52(1), P. 37–42.
71. Brown Jr. F.H., Duwez P. The Zirconia-Titania System. J. Am. Ceram. Soc., 1954, 37(3), P. 129–132.
72. Cocco A., Torriano G. Relations between the solid phases in the system ZrO2–TiO2. Ann. Chim. (Rome), 1965, 55(3), P. 153–163.
73. Cocco A., Torriano G. Ann. Chim. (Rome), 1958, 48(8/9), P. 587–599.
74. Webster A.H., MacDonald R.C., Bowman W.S. The System PbO–ZrO2–TiO2 at 1100 ◦C. J. Can. Ceram. Soc., 1965, 34, P. 97–102.
75. Noguchi T., Mizuno M. Phase changes in solids measured in a solar furnace ZrO2–TiO2 system. Sol. Energy, 1967, 11(1), P. 56–61.
76. Noguchi T., Mizuno M. Phase changes in the ZrO2–TiO2 system. Bull. Chem. Soc. Jpn., 1968, 41(12), P. 2895–2899.
77. Sugai T., Hasegawa S. Growth of zirconium titanate (ZrTiO4) single crystals from molten salts. J. Geram. Assoc. Japan, 1968, 76(12), P. 429–430.
78. Ono A. Solid solutions in the system ZrO2–TiO2. Mineral. J., 1972, 6(6), P. 433–441.
79. Shevchenko A.V., Lopato L.M., Maister I.M., Gorbunov O.S. The TiO2–ZrO2 system. Russ. J. Inorg. Chem., 1980, 25(9), P. 1379–1381.
80. Willgallis A., Seigmann E., Hettiarachi T. Srilankite, a new Zr-Ti-oxide mineral. Neues Jahrb. fur Mineral. Monatshefte¨ , 1983, 4, P. 151–157.
81. Domingues L.P., McHale A.E., Negas T., Roth R.S. Processing and properties of ZrTiO4-Based Ceramics; P. A21-A21 in International Conf. on the Science and Technology of Zirconia, Extended Abstract, 2nd, Stuttgart, Germany, June 21–23, 1983.
82. McHale A.E., Roth R.S. Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solutions. J. Am. Ceram. Soc., 1983, 66(2), P. C18–C20.
83. McHale A.E., Roth R.S. Low-Temperature Phase Relationships in the System ZrO2–TiO2. J. Am. Ceram. Soc., 1986, 69(11), P. 827–832.
84. Bordet P., McHale A.E., Santoro A., Roth R.S. Powder neutron diffraction study of ZrTiO4, Zr5Ti7O24, and FeNb2O6. J. Solid State Chem., 1986, 64(1), P. 30–46.
85. Kim D.-J. Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. J. Am. Ceram. Soc., 1989, 72(8), P. 1415–1421.
86. Christoffersen R., Davies P.K. Structure of Commensurate and Incommensurate Ordered Phases in the System ZrTiO4–Zr5Ti7O24. J. Am. Ceram. Soc., 1992, 75(3), P. 563–569.
87. Yokokawa H., Sakai N., Kawada T., Dokiya M. Phase Diagram Calculations for ZrO2 Based Ceramics: Thermodynamic Regularities in Zirconate Formation and Solubilities of Transition Metal Oxides. P. 59–68 in Sci. Technol. Zirconia V, [Int. Conf.], 5th, Melbourne, Australia, August 16–21, 1992. Edited by S.P.S. Badwal, M.J. Bannister, and R.H.J. Hannink, Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1993.
88. Kobayashi K., Kato K., Terabe K., Yamaguchi S., Iguchi Y. Metastable Phase Relationship in the ZrO2–YO1.5, ZrO2–TiO2 and YO1.5–TiO2 Systems. J. Ceram. Soc. JAPAN, 1998, 106(1236), P. 782–786.
89. Sham E.L., Aranda M.A.G., Farfan-Torres E.M., Gottifredi J.C., Mart´ınez-Lara M., Bruque S. Zirconium titanate from sol–gel synthesis: thermal decomposition and quantitative phase analysis. J. Solid State Chem., 1998, 139(2), P. 225–232.
90. Gong W., Jin Z., Du Y. Thermodynamic Assessment of the ZrO2–TiO2 Quasibinary System. J. Min. Met., 2000, 36(3–4)B, P. 123–132.
91. Park J.-H., Liang P., Seifert H.J., Aldinger F., Koo B.-K., Kim H.-G. Thermodynamic Assessment of the ZrO2–TiO2 System. J. Korean Ceram. Soc., 2001, 7(1), P. 11–15.
92. Troitzsch U., Ellis D.J. High-PT study of solid solutions in the system ZrO2-TiO2: The stability of srilankite. Eur. J. Mineral., 2004, 16(4), P. 577–584.
93. Troitzsch U., Christy A.G., Ellis D.J. Synthesis of Ordered Zirconium Titanate (Zr,Ti)2O4 from the Oxides Using Fluxes. J. Am. Ceram. Soc., 2004, 87(11), P. 2058–2063.
94. Troitzsch U., Ellis D.J., Christy, A.G. (2003–2006). Patent: Synthesis of Ceramic Crystals. Patent Application No. 2003906410 (Australian), PCT/AU2004/001615 WO 2005049497 (International).
95. Troitzsch U., Christy A.G., Ellis D.J. The crystal structure of disordered (Zr,Ti)O2 solid solution including srilankite: evolution towards tetragonal ZrO2 with increasing Zr. Phys. Chem. Miner., 2005, 32(7), P. 504–514.
96. Troitzsch U., Ellis D.J. The ZrO2–TiO2 phase diagram. J. Mater. Sci., 2005, 40(17), P. 4571–4577.
97. Schaedler T.A., Fabrichnaya O., Levi C.G. Phase equilibria in the TiO2–YO1.5–ZrO2 system. J. Eur. Ceram. Soc., 2008, 28(13), P. 2509– 2520.
98. Saenko I., Ilatovskaia M., Savinykh G., Fabrichnaya O. Experimental investigation of phase relations and thermodynamic properties in the ZrO2–TiO2 system. J. Am. Ceram. Soc., 2018, 101(1), P. 386–399.
99. Andrievsky R.A., Ragulya A.V. Nanostructured materials. Moscow, Ed. Center “Academy”, 2005, 192 p. [in Russian].
100. Bae D.-S., Han K.-S., Choi S.-H. Fabrication and microstructure of TiO2–ZrO2 composite membranes. J. Mater. Sci. Lett., 1997, 16(8), P. 658–660.
101. Guo H., Zhao S., Wu X., Qi, H. Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration. Microporous Mesoporous Mater., 2018, 260, P. 125–131.
102. Hwang D.-H., Lee B.-H. Synthesis and Formation Mechanism of ZrTiO4 Gray Pigment. J. Korean Ceram. Soc., 2012, 49(1), P. 84–89.
103. Wang C.L., Lee H.Y., Azough F., Freer R. The microstructure and microwave dielectric properties of zirconium titanate ceramics in the solid solution system ZrTiO4–Zr5Ti7O24. J. Mater. Sci., 1997, 32(7), P. 1693–1701.
104. Vasilevskaya A.K., Almyasheva O.V. Features of phase formation in the ZrO2–TiO2 system under hydrothermal conditions. Nanosyst.: Phys. Chem. Math., 2012, 3(4), P. 75–81 [in Russian].
105. Bachina A.K., Almjasheva O.V., Danilovich D.P., Popkov V.I. Synthesis, Crystal Structure, and Thermophysical Properties of ZrTiO4 Nanoceramics. Russ. J. Phys. Chem. A, 2021, 95(8), P. 1529–1536.
106. Gusarov V.V. Rapid solid-phase chemical reactions. Russ. J. Gen. Chem., 1997, 67(12), P. 1959–1964 [in Russian].
107. Almyasheva O.V. Hydrothermal synthesis, structure and properties of nanocrystals and nanocomposites in the ZrO2–Al2O3–SiO2 system: dissertation abstract ... candidate of chemical sciences: 02.00.04, St. Petersburg, 2007, 24 p. [in Russian].
108. McMurdie H.F., Hall F.P. Phase diagrams for ceramists: Supplement No. 1. J. Am. Ceram. Soc., 1949, 32(s1), P. 154–164.
109. Toropov N.A., Galakhov F.Ya. Liquid immiscibility in the ZrO2–SiO2 system. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1956, 2, P. 157–162 [in Russian].
110. Jones T.S., Kimura S., Muan A. Phase Relations in the System FeO-Fe2O3-ZrO2-SiO2. J. Am. Ceram. Soc., 1967, 50(3), P. 137–142.
111. Butterman W.C., Foster W.R. Zircon stability and the ZrO2–SiO2 phase diagram. Am. Mineral., 1967, 52(5–6), P. 880–885.
112. Kamaev D.N., Archugov S.A., Mikhailov G.G. Study and Thermodynamic Analysis of the ZrO2–SiO2 System. Russ. J. Appl. Chem., 2005, 78(2), P. 200–203.
113. Kwon S.Y., Jung I.-H. Critical evaluation and thermodynamic optimization of the CaO-ZrO2 and SiO2-ZrO2 systems. J. Eur. Ceram. Soc., 2017, 37(3), P. 1105–1116.
114. Al’myasheva O.V., Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Dokl. Phys. Chem., 2009, 424(2), P. 43–45.
115. Almjashev V.I., Gusarov V.V., Khabensky V.B. USiO4 stability analysis. Technologies for ensuring the life cycle of nuclear power plants, 2020, 2(20), P. 80–97 [in Russian].
116. Pena P., De Aza S. El Sistema ZrO2–SiO2–TiO2. Bol. Soc. Esp. Ceram. Vidr., 1976, 15(2), P. 93–95.
117. Sugai M., Fujimori K., Sahara R., Hirano S., Somiya S. Phase Relations in the system ZrSiO4–TiO2 at temperatures between 1500 and 1700 ◦C. J. Ceram. Soc. JAPAN, 1974, 82(8), P. 447–453.
118. Phase Equilibria Diagrams Online Search system by NIST ACerS. URL: https://phaseonline.ceramics.org/ped_figure_search (date of access: 01.03.21).
119. Mazurin O.V., Gusarov V.V. The Future of Information Technologies in Materials Science. Glass Phys. Chem., 2002, 28(1), P. 50–58.
120. Information-analytical system for phase diagrams and properties of refractory oxides. URL: http://chemdm.ru/index.php/PhDIAS (date of access: 01.03.21).
Рецензия
Для цитирования:
, , . Наносистемы: физика, химия, математика. 2021;12(6):711-727. https://doi.org/10.17586/2220-8054-2021-12-6-711-727
For citation:
Kirillova S.A., Almjashev V.I., Stolyarova V.L. Phase equilibria and materials in the TiO2–SiO2–ZrO2 system: a review. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):711-727. https://doi.org/10.17586/2220-8054-2021-12-6-711-727