Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Structure and photoluminescent properties of TiO2:Eu3+ nanoparticles synthesized under hydro and solvothermal conditions from different precursors

https://doi.org/10.17586/2220-8054-2019-10-3-361-373

Abstract

Crystalline phosphors of Eu3+-doped titania (TiO2:Eu3+) were prepared by hydro and solvothermal synthesis with luminescent ion concentration of 2 mol.%. The structure and shape of the synthesized nanoparticles were characterized using X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. Changes in the emission, excitation spectra, and the intensity decay of the photoluminescence for TiO2:Eu3+ nanoparticles were analyzed their phase composition. The photoluminescence of synthesized TiO2:Eu3+ crystalline phosphors depends on whether the said nanophosphors are formed from organometallic or inorganic precursors under hydro- and solvothermal conditions. Indeed, photoluminescence excitation at wavelengths ranging from 350–550 nm leads to splitting of electron dipole transitions into Stark components according to the symmetry of the Eu3+ surroundings. Also, both nanoparticles with the anatase structure and phosphors predominantly containing rutile showed very short photoluminescence lifetimes.

About the Authors

A. Yu. Zavialova
Saint Petersburg Electrotechnical University “LETI”; Saint-Petersburg State Institute of Technology (Technical University)
Russian Federation

ul. Professora Popova 5, 197376 Saint Petersburg

Moskovsky prospect 26, Saint Petersburg, 190013



A. N. Bugrov
Saint Petersburg Electrotechnical University “LETI”; Institute of macromolecular compounds RAS
Russian Federation

ul. Professora Popova 5, 197376 Saint Petersburg

Bolshoy pr. 31, 199004 Saint Petersburg



R. Yu. Smyslov
Institute of macromolecular compounds RAS; Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Bolshoy pr. 31, 199004 Saint Petersburg

Polytechnicheskaya 29, 195251 Saint Petersburg



D. A. Kirilenko
Ioffe Institute RAS; ITMO University
Russian Federation

Politekhnicheskaya ul. 26, 194021 Saint Petersburg

197101, Kronverskii avenue 49, Saint Petersburg



T. V. Khamova
Grebenshchikov Institute of Silicate Chemistry RAS
Russian Federation

Makarova nab. 2., letter B, 199034 Saint Petersburg



G. P. Kopitsa
Grebenshchikov Institute of Silicate Chemistry RAS; Petersburg Nuclear Physics Institute, NRC KI
Russian Federation

Makarova nab. 2., letter B, 199034 Saint Petersburg

Orlova roscha mcr. 1, 188300, Gatchina, Leningrad region 



C. Licitra
University Grenoble Alpes, CEA, LETI
France

F-38000 Grenoble



D. Rouchon
University Grenoble Alpes, CEA, LETI
France

F-38000 Grenoble



References

1. Hingwe V.S., Bajaj N.S., Omanwar S.K. Eu3+ doped N-UV emitting LiSrPO4 phosphor for W-LED application. Optik – International Journal for Light and Electron Optics, 2017, 130, P. 149–153.

2. Ozawa L., Itoh M. Cathode ray tube phosphors. Chemical Reviews, 2003, 103(10), P. 3835–3856.

3. Lovisa L.X., Andrs J., Gracia L., Li M.S., Paskocimas C.A., Bomio M.R.D., Arajo V.D., Longo E., Motta F.V. Photoluminescent properties of ZrO2:Tm3+, Tb3+, Eu3+ Powders—A combined experimental and theoretical study. Journal of Alloys and Compounds, 2017, 695, P. 3094–3103.

4. Nguyen T.-L., Castaing M., Gacoin T., Boilot J.-P., Balembois F. Single YVO ˆ 4:Eu nanoparticle emission spectra using direct Eu3+ ion excitation with a sum-frequency 465-nm solid-state laser. Optics Express, 2014, 22(17), P. 20542–20550.

5. Bugrov A.N., Zavialova A.Yu., Smyslov R.Yu., Anan’eva T.D., Vlasova E.N., Mokeev M.V., Kryukov A.E., Kopitsa G.P., Pipich V. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, 33(5), P. 837–849.

6. Julia’n-Lo’pez P.E.B., Planelles-Arago J., Cordoncillo E., Vianab B., Sanchez C. Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. Journal of Materials Chemistry, 2008, 18, P. 23–40.

7. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: physics, chemistry and mathematics, 2017, 8(3), P. 391–396.

8. Di W., Wang X., Chen B., Lu S., Zhao X. Effect of OH−on the luminescent efficiency and lifetime of Tb3+-doped yttrium orthophosphate synthesized by solution precipitation. Journal of Physical Chemistry B, 2005, 109, P. 13154–13158.

9. Tiseanu C., Cojocaru B., Parvulescu V.I., Sanchez-Dominguez M., Primus P.A., Boutonnet M. Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Physical Chemistry Chemical Physics, 2012, 14, P. 12970–12981.

10. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kirilenko D.A., Pankin D.V. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosystems: physics, chemistry and mathematics, 2018, 9(3), P. 378–388.

11. Bunzli J.C.G., Eliseeva S.V. Basics of lanthanide photophysics. In: H ¨ anninen P., H ¨ arm¨ a H. (eds) ¨ Lanthanide Luminescence. Springer Series on Fluorescence (Methods and Applications), 2010, 7, P. 1-45.

12. Maciel G.S., Rakov N. Photon conversion in lanthanide -doped powder phosphors: concepts and applications. RSC Advances, 2015, 5, P. 17283–17295.

13. Som T., Karmakar B. Optical properties of Eu3+−doped antimony-oxide-based low phonon disordered matrices. Journal of Physics: Condensed Matter, 2010, 22(035603), P. 11.

14. Bunzli J.C.G. On the design of highly luminescent lanthanide complexes. ¨ Coordination Chemistry Reviews, 2015, 293–294, P. 19–47.

15. Yakimanskii A.V., Goikhman M.Ya., Podeshvo I.V., Anan’eva T.D., Nekrasova T.N., Smyslov R.Yu. Luminescence of Ln3+. Lanthanide complexes in polymer matrices. Polymer Science, Ser. A, 2012, 54(12), P. 921–941.

16. Bekiari V., Lianos P. Multicolor emission from terpyridine–lanthanide ion complexes encapsulated in nanocomposite silica/poly(ethyleneglycol) sol–gel matrices. Journal of Luminescence, 2003, 101, P. 135–140.

17. Kolesnikov I.E., Povolotskiy A.V., Mamonovaa D.V., Lahderant E., Manshina A.A., Mikhailov M.D. Photoluminescence properties of Eu ¨ 3+ ions in yttrium oxide nanoparticles: defect vs. normal sites. RSC Advances, 2016, 8, P. 9.

18. Liu Y., Zhou S., Tu D., Chen Z., Huang M., Zhu H., Ma E., Chen X. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. Journal of the American Chemical Society, 2012, 134, P. 15083–15090.

19. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(2), P. 164–175.

20. Zhu X., Su Q., Feng W., Li F. Anti-Stokes shift luminescent materials for bio-applications. The Royal Society of Chemistry, 2016, P. 15.

21. Luo W., Liu Y., Chen X. Lanthanide-doped semiconductor nanocrystals: electronic structures and optical properties. Science China Materials, 2015, 58(10), P. 819–850.

22. Meetei S.D., Singh S.D. Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals. Journal of Luminescence, 2014, 147, P. 328–335.

23. Zhang J., Zhou P., Liub J., Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 2014, 16, P. 20382.

24. Ovenstone J., Titler P.J., Withnall R., Silver J. A Study of the Effects of Europium Doping and Calcination on the Luminescence of Titania Phosphor Materials. Journal of Physical Chemistry B, 2001, 105, P. 7170–7177.

25. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1031–1049.

26. Chen W., Zhou A., Yang X., Liu Y. Synthesis, structure and luminescence properties of TiO2:Eu3+ for white light-emitting diode. Journal of Alloys and Compounds, 2013, 581, P. 330–334.

27. Li H., Sheng Y., Zhao H., Song Y., Gao F., Huo Q., Zou H. Facile synthesis and luminescent properties of TiO2:Eu3+ nanorods and spindleshaped nanoparticles from titanate nanotubes precursors. Materials Research Bulletin, 2012, 47, P. 4322–4328.

28. Li H., Sheng Y., Zhang H., Xue J., Zheng K., Huo Q., Zou H. Synthesis and luminescent properties of TiO2:Eu3+ nanotubes. Powder Technology, 2011, 212(2), P. 372–377.

29. Duong N.T., Tuan D.A., Son N.M., Tung V.T. Photoluminescent properties of Eu3+ doped TiO2 nanoparticles synthesized using an acid sulfuric method. Wulfenia, 2018, 25(8), P. 136–146.

30. Tong T., Zhang J., Tian B., Chen F., He D., Anpo M. Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. Journal of Colloid and Interface. Science, 2007, 315(1), P. 382–388.

31. Xie Y., Yuan C., Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Materials Science and Engineering B, 2005, 117, P. 325–333.

32. Liu H., Yu L., Chen W., Li Y. The progress of TiO2 nanocrystals doped with rare earth ions. Journal of Nanomaterials, 2012, P. 9.

33. Zakaria S.A., Kassim A., Lim H.N., Anwar N.S., Huang N.M. Synthesis of titanium dioxide microstructures via sucrose ester microemulsionmediated hydrothermal method. Sains Malaysiana, 2010, 39(6), P. 975–979.

34. Ohsaka T., Izumi F., Fujiki Y. Raman spectrum of anatase, TiO2. Journal of Raman spectroscopy, 1978, 7(6), P. 321–324.

35. Choi H.C., Jung Y.M., Kim S.B. Size effects in the Raman spectra of TiO2 nanoparticles. Vibrational Spectroscopy, 2005, 37, P. 33–38.

36. Cheng H., Ma J, Zhao Z. et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles Chemistry of Materials, 1995, 7, P. 663–671.

37. Ebendor-Heidepriem H., Ehrt D. Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Optical Materials, 2000, 15, P. 7–25.

38. Gorller-Walrand C., Binnemans K. Spectral intensities of f–f transitions. In: Gschneidner K.A.Jr., Eyring L. ¨ Handbook on the physics and chemistry of rare earths. Elsevier BV, Amsterdam, Ch. 167, 1998, 25.


Review

For citations:


Zavialova A.Yu., Bugrov A.N., Smyslov R.Yu., Kirilenko D.A., Khamova T.V., Kopitsa G.P., Licitra C., Rouchon D. Structure and photoluminescent properties of TiO2:Eu3+ nanoparticles synthesized under hydro and solvothermal conditions from different precursors. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(3):361-373. https://doi.org/10.17586/2220-8054-2019-10-3-361-373

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)