Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Influence of carbon or nitrogen dopants on the electronic structure, optical properties and photocatalytic activity of partially reduced titanium dioxide

https://doi.org/10.17586/2220-8054-2019-10-3-374-382

Abstract

For titanium dioxide with anatase structure doped with carbon or nitrogen, the first-principle method of projector augmented waves (PAW) is used to calculate electronic band structure, to evaluate vacancy formation energy for the oxygen sublattice, and to analyze optical absorption. It is demonstrated that the presence of carbon dopants results in the stabilization of oxygen vacancies and leads to increased absorption in the visible spectrum, which can facilitate the photocatalytic activity. The presence of nitrogen dopant also facilitates vacancy stabilization but no increase in the interband absorption is expected in the visible spectrum, i.e., the presence of nitrogen dopant cannot be considered as a factor contributing to increased photocatalytic activity. It follows from the calculated data that the maximum photocatalytic activity should be expected for the partiallyreduced anatase doped with carbon because of the absorption in the visible spectrum that combines with long time of electron-hole recombination.

About the Authors

V. P. Zhukov
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation


M. G. Kostenko
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation


A. A. Rempel
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
Russian Federation


I. R. Shein
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation


References

1. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. Environmental applications of the semiconductor photocatalysis. Chem. Rev., 1995, 95 (1), P. 69-96.

2. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1 (1), P. 1–21.

3. Hashimoto K., Irie H., Fugishima A. TiO2 photocatalysis: a hystorical overview and future prospects. Jap. Journ. Appl. Phys., 2005, 44 (12), P. 8269–8285.

4. Zaleska A. Doped-TiO2: a review. Recent Patents on Engineering, 2008, 2 (3), P. 157–164.

5. Kitano M., Tsujimaru M., Anpo M. Hydrogen producing using highly active titanium oxide-based photocatalysts. Top. Catal., 2008, 49 (1–2), P. 4–17.

6. Thakur R.S., Chaudhary R., Singh C.J. Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: a review. Renewable Sustainable Energy, 2010, 2 (4), P. 042701–04399.

7. Gupta S.M., Tripathi M. A review of TiO2 nanoparticles. Chinese Sci. Bull., 2011, 56 (16), P. 1639–1657.

8. Justicia I., Ordejon P., et al. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. ´ Advanced materials, 2002, 14 (19), P. 1399–1402.

9. Martyanov I.N., Uma S., Rodrigues Sh., Klabunde K.J. Structural defects cause TiO2-based photocatalysts to be active in visible light. Chem. Commun., 2004, 21, P. 2476–2477.

10. Liu H., Yang W., Ma Y., Yao J. Extended visible light response of binary TiO2–Ti2O3 photocatalist prepared by a photo-assisted sol-gel method. Applied Catalysis A, 2006, 299 (1), P. 218–223.

11. Dong C.X., Xian A.P., Han E.H., Shang J.K. Acid-mediated sol-gel synthesis of visible-light active photocatalists. Journ. of Mater Sci., 2006, 41 (18), P. 6168–6170.

12. Yang X., Cao Ch., et al. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. Journ. of Catalysis, 2008, 260 (1), P. 128–133.

13. Di Valentin C., Pacchioni G., Selloni A. Theory of carbon doping of titanium dioxide. Chem. Mater., 2005, 17 (26), P. 6656–6665.

14. Di Valentin C., Finazzi E., et al. N-doped TiO2: theory and experiment. Chem. Phys., 2007, 339 (1–3), P. 44–56.

15. He J., Sinnot S.B. Ab initio calculations of intrinsic defects in rutile TiO2. Journ. Amer. Ceram. Soc., 2005, 88 (3), P. 737–741.

16. He J., Behera R.K., et al. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations. Acta Materialia, 2007, 55 (13), P. 4325–4337.

17. Xiao Q., Si Zh., et al. Effect of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylen blue degradation. Journ. of Mater. Sci., 2007, 42 (22), P. 9194–9199.

18. Islam M.M., Bredow T., Gerson A. Electronic properties of oxygen-deficient and aluminium-doped rutile TiO2 from first principles. Phys. Rev. B, 2007, 76 (4), 045217.

19. Osorio-Guillen J., Lany S., Zunger A. Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, ´ Ta in anatase TiO2. Phys. Rev. Lett., 2008, 100 (3), 036601.

20. Zainullina V.M., Zhukov V.P., et al. Electronic structure and the optical and photocatalytic properties of anatase doped with vanadium and cabon. Physics of the Solid State, 2010, 52 (2), P. 271–280.

21. He J., Finnis M.W., Dickey E.C., Sinnott S.B. Charged defects formation energies in TiO2 using the supercell approximation. Advances in Science and Technology, 2006, 45, P. 1–8.

22. Payne M.C., Teter M.P., et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. of Modern Physics, 1992, 64 (4), P. 1045–1098.

23. Diebold U. The surface science of titanium dioxide. Surface Science Reports, 2003, 48 (5–8), P. 53–229.

24. Kresse G., Marsman M., Furthmuller J. Vasp the guide. 2011. URL: http://cms.mpi.univie.ac.at/vasp/guide/vasp.html.

25. Zhukov V.P., Shein I.R. Ab initio thermodynamic characteristics of the formation of oxygen vacancies, and boron, carbon, and nitrogen impurity centers in anatase. Physics of the Solid State, 2018, 60 (1), P. 37–48.

26. Ziman J.M. Principles of the Theory of Solids. Cambridge University Press, 2013, 452 p.

27. Dudarev S.L., Botton G.A., et al. Electron-energy loss spectra and structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B, 1998, 57 (3), P. 1505–1509.

28. Tang H., Berger H., et al. Photoluminescence in TiO2 anatase single crystals. Solid State Commun., 1993, 87 (9), P. 847–850.

29. Jac´ımovic J., Vaju C., et al. Pressure dependence of the large-polaron transport in anatase. EPL, 2012, 99 (5), 57005.

30. Sekiya T., Yagisawa T., et al. Defects in anatase TiO2 single crystal controlled by heat treatment. Journ. of the Phys. Soc. of Japan, 2004, 73 (3), P. 703–710.

31. Wu J., Walukiewicz W., et al. Unusual properties of the fundamental band gap of InN. Appl. Phys Lett., 2002, 80 (21), P. 3967–3969.

32. Henderson M.A. A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66 (6–7), P. 185–297.

33. Schneider J., Matsuoka M., et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Review, 2014, 114 (19), P. 9919– 9986.

34. Tyuterev V.G., Zhukov V.P., Chulkov E.V., Echenique P.M. Relaxation of highly excited carriers in wide-gap semiconductors. Journ. of Phys.: Cond. Matter, 2015, 2, 02581.

35. Zhukov V.P., Tyutetev V.G., Chulkov E.V., Echenique P.M. Hole-phonon relaxation and photocatalytic properties of titaniu dioxide and zinc oxide: first-principle approach. Intern. Journ. of Photoenergy, 2014, Article Id. 738921.

36. Mrowetz M., Balcerski W., Colussi A.J., Hoffmann M.R. Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journ. of Phys. Chem. B, 2004, 108 (45), P. 17269–17273.

37. Irie H., Watanabe Y., Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. Journ. of Phys. Chem. B, 2003, 107 (23), P. 5483–5486.

38. Fu H.B., Zhang L.W., et al. Electron spin resonance spin-trapping of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. Journal of Phys. Chem. B, 2006, 110 (7), P. 3061–3065.

39. Tachikawa T., Fujitsuka M., Majima T. Mechanistic insight into the TiO2 photocatalytic reactons: design of new photocatalysts. Journal of Physical Chemistry C, 2007, 111 (14), P. 5259–5275.


Review

For citations:


Zhukov V.P., Kostenko M.G., Rempel A.A., Shein I.R. Influence of carbon or nitrogen dopants on the electronic structure, optical properties and photocatalytic activity of partially reduced titanium dioxide. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(3):374-382. (In Russ.) https://doi.org/10.17586/2220-8054-2019-10-3-374-382

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)