Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Dispersibility of freeze-drying unmodified and modified TEMPO-oxidized cellulose nanofibrils in organic solvents

https://doi.org/10.17586/2220-8054-2021-12-6-763-772

Abstract

Cellulose nanofibrils (TOCNF) with a width of 20±6 nm and a length of 809±98 nm were prepared using 2,2,6,6-tetramethylpiperidinyl-1oxyl (TEMPO)-mediated oxidation. Two modifying agents were used to functionalize the TOCNF surface in aqueous media: alkyl ketene dimer (AKD) and 3-aminopropyltriethoxysilane (APS). The hydrophilic aerogel L-TOCNF, hydrophobic aerogels L-TOCNF-AKD and L-TOCNF-APS with water contact angles of 0, 139±2, and 133±2, respectively, were prepared by freeze-drying of the aqueous dispersions. The elemental composition, morphology, sizes and crystal structure were determined by EDX analysis, scanning electron microscopy and X-ray diffraction, respectively. The process of redispersion of lyophilized samples in water and four organic solvents was investigated. The effect of TOCNF modification and solvent polarity on the redispersibility of lyophilized samples was revealed: the dispersibility of hydrophobic L-TOCNF-AKD and L-TOCNF-APS in organic solvents was significantly improved.

About the Authors

A. A. Luginina
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38, Vavilov Street, Moscow 119991.



S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38, Vavilov Street, Moscow 119991.



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

31, Leninsky Prospect, Moscow 119991.



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38, Vavilov Street, Moscow 119991.



A. D. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

31, Leninsky Prospect, Moscow 119991.



D. I. Petukhov
Lomonosov Moscow State University, Chemical department
Russian Federation

1-3, Leninskie Gory, Moscow, 119991.



S. Yu. Kottsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

31, Leninsky Prospect, Moscow 119991.



E. V. Chernova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38, Vavilov Street, Moscow 119991.



P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38, Vavilov Street, Moscow 119991.



References

1. De France K., Zeng Z., Wu T., Nystrom G. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up¨ Fabrication. Advanced Materials, 2021, 33 (28), P. 2000657.

2. De Amorim J.D.P., de Souza K.C., et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett., 2020, 18, P. 851–869.

3. Liu Z., Zhang S., He B. et al. Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose, 2021, 28, P. 2697– 2714.

4. Ahankari S.S., Subhedar A.R., Bhadauria S.S., Dufresne A. Nanocellulose in food packaging: a review. Carbohyd. Polym., 2020, 255, P. 117479.

5. Dias O.A.T., Konar S., et al. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front. Chem., 2020, 8, P. 420.

6. Nie S., Hao N., et al. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose, 2020, 27, P. 4173–4187.

7. Luginina A.A., Kuznetsov S.V., et al. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin. Nanosystems: Phys. Chem. Math., 2019, 10 (5), P. 585–598.

8. Saito T., Kimura S., Nishiyama Y., Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8 (8), P. 2485–2491.

9. Isogai A., Saito T., Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3 (1), P. 71–85.

10. Isogai A. Development of completely dispersed cellulose nanofibers. Proceedings of the Japan Academy, Series B, 2018, 94 (4), P. 161–179.

11. Isogai A. Emerging Nanocellulose Technologies: Recent Developments. Advanced Materials, 2020, 53, P. 2000630.

12. Forti E.S., El AwadAzrak S.M., et al. Mechanical enhancement of cellulose nanofibril (CNF) films through the addition of water-soluble polymers. Cellulose, 2021, 28 (10), P. 6449–6465.

13. Beck S., Bouchard J., Berry R. Dispersibility in Water of Dried Nanocrystalline Cellulose. Biomacromolecules, 2012, 13 (5), P. 1486–1494.

14. Okita Y., Fujisawa S., Saito T., Isogai A. TEMPO-Oxidized Cellulose Nanofibrils Dispersed in Organic Solvents. Biomacromolecules, 2011, 12, P. 518–522.

15. Fujisawa S., Saito T., et al. Surface Engineering of Ultrafine Cellulose Nanofibrils toward Polymer Nanocomposite Materials. Biomacromolecules, 2013, 14 (5), P. 1541–1546.

16. Fujisawa S., Saito T., et al. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites. Composites Science and Technology, 2014, 90, P. 96–101.

17. Soeta H., Fujisawa S., Saito T., Isogai A. Controlling Miscibility of the Interphase in Polymer-Grafted Nanocellulose/Cellulose Triacetate Nanocomposites. ACS Omega, 2020, 5 (37), P. 23755–23761.

18. Fujisawa S., Saito T., Isogai A. Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose, 2012, 19, P. 459–466.

19. Qu J., Yuan Z., et al. Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide. Cellulose, 2019, 26, P. 7769–7780.

20. Shrestha S., Chowdhury R.A., et al. Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process and its effect on properties of epoxy nanocomposites. Cellulose, 2019, 26, P. 9631–9643.

21. Dong H., Napadensky E., et al. Cellulose Nanofibrils and Diblock Copolymer Complex: Micelle Formation and Enhanced Dispersibility. ACS Sustain. Chem. Eng., 2016, 5 (2), P. 1264–1271.

22. Viet D., Beck-Candanedo S., Gray D.G. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose, 2007, 14, P. 109–113.

23. Heux L., Chauve G., Bonini C. Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents. Langmuir, 2000, 16 (21), P. 8210–8212.

24. Peng S.X., Chang H., et al. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification. Cellulose, 2016, 23 (3), P. 1825–1846.

25. Han J., Zhou C., et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules, 2013, 14, P. 1529–1540.

26. Kaboorani A., Riedl B., Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind. Crops Prod., 2015, 65, P. 45–55.

27. Samir M.A.S.A., Alloin F., et al. Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension. Macromolecules, 2004, 37 (4), P. 1386–1393.

28. Tang L.M., Weder C. Cellulose Whisker/Epoxy Resin Nanocomposites. ACS Appl. Mater. Interfaces, 2010, 2 (4), P. 1073–1080.

29. Voronova M.I., Surov O.V., et al. Dispersibility of Nanocrystalline Cellulose in Organic Solvents. Russian Journal of Bioorganic Chemistry, 2020, 46 (7), P. 1295–1303.

30. Hu Z., Berry R.M., Pelton R., Cranston E.D. One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustain. Chem. Eng., 2017, 5, P. 5018–5026.

31. Jiang F., Hsieh Y.L. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl. Mater. Interfaces, 2014, 6, P. 20075–20084.

32. Indarti E., Marwan, Wanrosli W.D. Dispersion Stability of Nanocellulose in Nonpolar Solvent: Chloroform. Materials Science Forum, 2020, 998, P. 170–175.

33. Araki J., Wada M., Kuga S. Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting. Langmuir, 2001,17 (1), P. 21–27.

34. Johnson R.K., Zink-Sharp A., Glasser W.G. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose, 2011, 18, P. 1599–1609.

35. Chu Y., Sun Y., Wu W., Xiao H. Dispersion Properties of Nanocellulose: A Review. Carbohyd. Polym., 2020, 250. P. 116892.

36. Fedorov P.P., Luginina A.A., et al. Composite up-conversion luminescent ?lms containing a nanocellulose and SrF2:Ho particle. Cellulose, 2019, 26 (4), P. 2403–2423.

37. Luginina A.A., Kuznetsov S.V., et al. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Ho composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose, 2021, 28, P. 10841–10862.

38. Fedorov P.P., Luginina A.A., et al. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohyd. Polym., 2020, 250, P. 116866.

39. Jiang F., Han S., Hsieh Y.L. Controlled defibrillation of rice straw cellulose and selfassembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances, 2013, 3 (30), P. 12366–12375.

40. Du L., Yu Z., Wang J., et al. Analyzing the film formation mechanism of cellulose nanoparticles (CNPs) based on the fast freeze-drying morphology. Cellulose, 2020, 27, P. 6921–6933.

41. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Second ed., Mir Publishers, Moscow, 1991, 763 p.

42. Kasuga T., Isobe N., et al. Clearly transparent nanopaper from highly concentrated cellulose nanofiber dispersion using dilution and sonication. Nanomaterials, 2018, 8 (2), P. 104.

43. Sharma A., Mandal T., Goswami S. Dispersibility and Stability Studies of Cellulose Nanofibers: Implications for Nanocomposite Preparation. J. Polym. Environ., 2021, 29, P. 1516–1525.


Review

For citations:


Luginina A.A., Kuznetsov S.V., Ivanov V.K., Voronov V.V., Yapryntsev A.D., Petukhov D.I., Kottsov S.Yu., Chernova E.V., Fedorov P.P. Dispersibility of freeze-drying unmodified and modified TEMPO-oxidized cellulose nanofibrils in organic solvents. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):763-772. https://doi.org/10.17586/2220-8054-2021-12-6-763-772

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)