Дисперсность лиофилизированных немодифицированных и модифицированных TEMPО-окисленных нанофибрилл целлюлозы в органических растворителях
https://doi.org/10.17586/2220-8054-2021-12-6-763-772
Аннотация
Нанофибриллы целлюлозы (TOCNF) шириной 20 ± 6 нм и длиной 809 ± 98 нм были получены с помощью 2,2,6,6-тетраметилпиперидинил-1-оксил (TEMPO)-опосредованного окисления. Для функционализации поверхности TOCNF в водной среде использовали два модифицирующих агента: димер алкилкетена (AKD) и 3-аминопропилтриэтоксисилан (APS). Гидрофильный аэрогель L-TOCNF, гидрофобные аэрогели L-TOCNF-AKD и L-TOCNF-APS с краевыми углами смачивания водой 0, 139 ± 2 и 133 ± 2° соответственно получали лиофильной сушкой водных дисперсий. Элементный состав, морфологию, размеры и кристаллическую структуру определяли с помощью EDX-анализа, сканирующей электронной микроскопии и рентгеноструктурного анализа соответственно. Исследован процесс редиспергирования лиофилизированных образцов в воде и четырех органических растворителях. Выявлено влияние модификации ТОКНФ и полярности растворителя на редиспергируемость лиофилизированных образцов: значительно улучшилась диспергируемость гидрофобных L-TOCNF-AKD и L-TOCNF-AKD в органических растворителях.
Об авторах
A. A. LugininaРоссия
S. V. Kuznetsov
Россия
V. K. Ivanov
Россия
V. V. Voronov
Россия
A. D. Yapryntsev
Россия
D. I. Petukhov
Россия
S. Yu. Kottsov
Россия
E. V. Chernova
Россия
P. P. Fedorov
Россия
Список литературы
1. De France K., Zeng Z., Wu T., Nystrom G. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up¨ Fabrication. Advanced Materials, 2021, 33 (28), P. 2000657.
2. De Amorim J.D.P., de Souza K.C., et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett., 2020, 18, P. 851–869.
3. Liu Z., Zhang S., He B. et al. Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose, 2021, 28, P. 2697– 2714.
4. Ahankari S.S., Subhedar A.R., Bhadauria S.S., Dufresne A. Nanocellulose in food packaging: a review. Carbohyd. Polym., 2020, 255, P. 117479.
5. Dias O.A.T., Konar S., et al. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front. Chem., 2020, 8, P. 420.
6. Nie S., Hao N., et al. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose, 2020, 27, P. 4173–4187.
7. Luginina A.A., Kuznetsov S.V., et al. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin. Nanosystems: Phys. Chem. Math., 2019, 10 (5), P. 585–598.
8. Saito T., Kimura S., Nishiyama Y., Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8 (8), P. 2485–2491.
9. Isogai A., Saito T., Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3 (1), P. 71–85.
10. Isogai A. Development of completely dispersed cellulose nanofibers. Proceedings of the Japan Academy, Series B, 2018, 94 (4), P. 161–179.
11. Isogai A. Emerging Nanocellulose Technologies: Recent Developments. Advanced Materials, 2020, 53, P. 2000630.
12. Forti E.S., El AwadAzrak S.M., et al. Mechanical enhancement of cellulose nanofibril (CNF) films through the addition of water-soluble polymers. Cellulose, 2021, 28 (10), P. 6449–6465.
13. Beck S., Bouchard J., Berry R. Dispersibility in Water of Dried Nanocrystalline Cellulose. Biomacromolecules, 2012, 13 (5), P. 1486–1494.
14. Okita Y., Fujisawa S., Saito T., Isogai A. TEMPO-Oxidized Cellulose Nanofibrils Dispersed in Organic Solvents. Biomacromolecules, 2011, 12, P. 518–522.
15. Fujisawa S., Saito T., et al. Surface Engineering of Ultrafine Cellulose Nanofibrils toward Polymer Nanocomposite Materials. Biomacromolecules, 2013, 14 (5), P. 1541–1546.
16. Fujisawa S., Saito T., et al. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites. Composites Science and Technology, 2014, 90, P. 96–101.
17. Soeta H., Fujisawa S., Saito T., Isogai A. Controlling Miscibility of the Interphase in Polymer-Grafted Nanocellulose/Cellulose Triacetate Nanocomposites. ACS Omega, 2020, 5 (37), P. 23755–23761.
18. Fujisawa S., Saito T., Isogai A. Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose, 2012, 19, P. 459–466.
19. Qu J., Yuan Z., et al. Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide. Cellulose, 2019, 26, P. 7769–7780.
20. Shrestha S., Chowdhury R.A., et al. Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process and its effect on properties of epoxy nanocomposites. Cellulose, 2019, 26, P. 9631–9643.
21. Dong H., Napadensky E., et al. Cellulose Nanofibrils and Diblock Copolymer Complex: Micelle Formation and Enhanced Dispersibility. ACS Sustain. Chem. Eng., 2016, 5 (2), P. 1264–1271.
22. Viet D., Beck-Candanedo S., Gray D.G. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose, 2007, 14, P. 109–113.
23. Heux L., Chauve G., Bonini C. Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents. Langmuir, 2000, 16 (21), P. 8210–8212.
24. Peng S.X., Chang H., et al. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification. Cellulose, 2016, 23 (3), P. 1825–1846.
25. Han J., Zhou C., et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules, 2013, 14, P. 1529–1540.
26. Kaboorani A., Riedl B., Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind. Crops Prod., 2015, 65, P. 45–55.
27. Samir M.A.S.A., Alloin F., et al. Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension. Macromolecules, 2004, 37 (4), P. 1386–1393.
28. Tang L.M., Weder C. Cellulose Whisker/Epoxy Resin Nanocomposites. ACS Appl. Mater. Interfaces, 2010, 2 (4), P. 1073–1080.
29. Voronova M.I., Surov O.V., et al. Dispersibility of Nanocrystalline Cellulose in Organic Solvents. Russian Journal of Bioorganic Chemistry, 2020, 46 (7), P. 1295–1303.
30. Hu Z., Berry R.M., Pelton R., Cranston E.D. One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustain. Chem. Eng., 2017, 5, P. 5018–5026.
31. Jiang F., Hsieh Y.L. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl. Mater. Interfaces, 2014, 6, P. 20075–20084.
32. Indarti E., Marwan, Wanrosli W.D. Dispersion Stability of Nanocellulose in Nonpolar Solvent: Chloroform. Materials Science Forum, 2020, 998, P. 170–175.
33. Araki J., Wada M., Kuga S. Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting. Langmuir, 2001,17 (1), P. 21–27.
34. Johnson R.K., Zink-Sharp A., Glasser W.G. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose, 2011, 18, P. 1599–1609.
35. Chu Y., Sun Y., Wu W., Xiao H. Dispersion Properties of Nanocellulose: A Review. Carbohyd. Polym., 2020, 250. P. 116892.
36. Fedorov P.P., Luginina A.A., et al. Composite up-conversion luminescent ?lms containing a nanocellulose and SrF2:Ho particle. Cellulose, 2019, 26 (4), P. 2403–2423.
37. Luginina A.A., Kuznetsov S.V., et al. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Ho composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose, 2021, 28, P. 10841–10862.
38. Fedorov P.P., Luginina A.A., et al. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohyd. Polym., 2020, 250, P. 116866.
39. Jiang F., Han S., Hsieh Y.L. Controlled defibrillation of rice straw cellulose and selfassembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances, 2013, 3 (30), P. 12366–12375.
40. Du L., Yu Z., Wang J., et al. Analyzing the film formation mechanism of cellulose nanoparticles (CNPs) based on the fast freeze-drying morphology. Cellulose, 2020, 27, P. 6921–6933.
41. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Second ed., Mir Publishers, Moscow, 1991, 763 p.
42. Kasuga T., Isobe N., et al. Clearly transparent nanopaper from highly concentrated cellulose nanofiber dispersion using dilution and sonication. Nanomaterials, 2018, 8 (2), P. 104.
43. Sharma A., Mandal T., Goswami S. Dispersibility and Stability Studies of Cellulose Nanofibers: Implications for Nanocomposite Preparation. J. Polym. Environ., 2021, 29, P. 1516–1525.
Рецензия
Для цитирования:
Luginina A.A., Kuznetsov S.V., Ivanov V.K., Voronov V.V., Yapryntsev A.D., Petukhov D.I., Kottsov S.Yu., Chernova E.V., Fedorov P.P. Дисперсность лиофилизированных немодифицированных и модифицированных TEMPО-окисленных нанофибрилл целлюлозы в органических растворителях. Наносистемы: физика, химия, математика. 2021;12(6):763-772. https://doi.org/10.17586/2220-8054-2021-12-6-763-772
For citation:
Luginina A.A., Kuznetsov S.V., Ivanov V.K., Voronov V.V., Yapryntsev A.D., Petukhov D.I., Kottsov S.Yu., Chernova E.V., Fedorov P.P. Dispersibility of freeze-drying unmodified and modified TEMPO-oxidized cellulose nanofibrils in organic solvents. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):763-772. https://doi.org/10.17586/2220-8054-2021-12-6-763-772