Фотокаталитическая деградация красителя бенгальской розы на механохимически синтезированном оксиде цинка под действием видимого света
https://doi.org/10.17586/2220-8054-2021-12-6-773-782
Аннотация
В работе подведены итоги синтеза ZnO механохимическим методом с использованием прекурсора дигидрата оксалата цинка для изучения фотокаталитической деградации красителя Rose Bengal. Процесс превращения дигидрата оксалата цинка в ZnO был изучен с помощью анализа ТГА-ДТГ и ИК-Фурье-спектроскопии, полученные данные РФА четко выявили гексагональные вюрцитные кристаллитные структуры ZnO. Изображения FE-SEM подтвердили нанокристаллическую морфологию ZnO с примерно однородным распределением частиц по размерам. Чистота ZnO была подтверждена исследованием EDX. Оптическая ширина запрещенной зоны ZnO была определена с помощью УФ-видимой спектроскопии. Фотокаталитическую активность ZnO исследовали при разложении красителя бенгальской розы. Колориметрическое измерение поглощения использовали для оценки эффективности разложения. Каталитическую активность изучали в зависимости от концентрации красителя, емкости загрузки фотокатализатора, рН раствора красителя, времени облучения и т. д. Успешно изучена фотокаталитическая деструкция красителя бенгальского розового на механохимически синтезированном ZnO под действием видимого света.
Об авторах
Y. D. KaldanteИндия
R. N. Shirsat
Индия
M. G. Chaskar
Индия
Список литературы
1. Mancosu N., Snyder R.L., Kyriakakis G., Spano D. Water Scarcity and Future Challenges for Food Production. Water, 2015, 7, P. 975–992.
2. Ding, Y., Hayes M.J., Widhalm M. Measuring economic impacts of drought: a review and discussion. Disaster Prevention and Management, 2011, 20 (4), P. 434–446.
3. Van Leeuwen C.C.E., Cammeraat E.L.H., de Vente J., Boix-Fayos C. The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land use policy, 2019, 83, P. 174–186.
4. Velayatzadeh M. Introducing the causes, origins and effects of dust in Iran. J. of Air Pollution and Health, 2020, 5 (1), P. 63–70.
5. He B., Cui X., Wang H., Chen A. Drought: The most important physical stress of terrestrial ecosystems. Acta Ecologica Sinica, 2014, 34 (4), P. 179–183.
6. Humphries P., Baldwin D.S. Drought and aquatic ecosystems: an introduction. Freshwater biology, 2003, 48 (7), P. 1141–1146.
7. Bifulco M., Ranieri R. Impact of drought on human health. European J. of internal medicine, 2017, 46, e9–e10.
8. Bellemare M.F. Rising food prices, food price volatility, and social unrest. American J. of agricultural economics, 2015, 97 (1), P. 1–21.
9. Ibelings Bas W., Chorus I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: a review. Environmental pollution, 2007, 150 (1), P. 177–192.
10. Braun A., Augustynski J., et. al. Photocatalysis for energy and environmental sustainability. J. Mater. Res., 2010, 25 (1), P. 1–2.
11. Legrini O., Oliveros E., Braun A.M. Photochemical processes for water treatment. Chemical reviews, 1993, 93 (2), P. 671–698.
12. Barka N., Qourzal S., Assabbane A., Ait-Ichou Y. Solar photocatalytic degradation of textile dyes on dynamic pilot plant using supported TiO2. Arabian J. for Science and Engineering, 2010, 35 (2A), 131.
13. Parsons S., ed. Advanced oxidation processes for water and wastewater treatment, IWA publishing, 2004.
14. Munoz I., Rieradevall J., et al. Environmental assessment of different solar driven advanced oxidation processes. Solar Energy, 2005, 79 (4), P. 369–375.
15. Yu Z., H. Keppner, et al. Photocatalytic discoloration of Methyl Orange on innovative parylene–TiO2 flexible thin films under simulated sunlight. Applied Catalysis B: Environmental, 2008, 79 (1), P. 63–71.
16. Chan, Samuel Hong Shen, et al. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. of Chemical Technology & Biotechnology, 2011, 86 (9), P. 1130–1158.
17. Mills A., Davies R.H., Worsley D. Water purification by semiconductor photocatalysis. Chemical Society Reviews, 1993, 22 (6), P. 417–425.
18. Rajeshwar K., Osugi M.E., et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. of photochemistry and photobiology C: photochemistry reviews, 2008, 9 (4), P. 171–192.
19. Vidya C., Chandra Prabha M.N., Antony Raj M.A.L. Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environmental Nanotechnology, Monitoring & Management, 2016, 6, P. 134–138.
20. Mills A., Le Hunte S. An overview of semiconductor photocatalysis. J. of photochemistry and photobiology A: Chemistry, 1997, 108 (1), P. 1–35.
21. Drumond Chequer, Farah M., et al. Genotoxic and mutagenic effects of erythrosine B, a xanthene food dye, on HepG2 cells. Food and chemical toxicology, 2012, 50 (10), 3447.
22. Zhang Huanqiu, Jun Peng, et al. Hybrid microtubes of polyoxometalate and fluorescence dye with tunable photoluminescence. Chemical communications, 2012, 48 (37), P. 4462–4464.
23. Seo, Hyung-Kee, and Hyung-Shik Shin. ”Study on photocatalytic activity of ZnO nanodisks for the degradation of Rhodamine B dye.” Materials Letters 159 (2015): P. 265–268.
24. Mpountoukas P., Pantazaki A., et al. Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food and Chemical Toxicology, 2010, 48 (10), P. 2934–2944.
25. Ritchie E.E., Princz J.I., Robidoux P.J., Scroggins R.P. Ecotoxicity of xanthene dyes and a non-chlorinated bisphenol in soil. Chemosphere, 2013, 90 (7), P. 2129–2135.
26. Pardeshi S.K., Patil A.B. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J. of Molecular Catalysis A: Chemical, 2009, 308 (1–2), P. 32–40.
27. Wu L., Yu J.C., Fu X. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. of Molecular Catalysis A: Chemical, 2006, 244 (1–2), P. 25–32.
28. JCPDS Card No. 36-1451.
29. Nafees M., Liaqut W., Ali S., Shafique M.A. Synthesis of ZnO/Al: ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping. Applied Nanoscience, 2013, 3 (1), P. 49–55.
30. Aparna P.U., Divya N.K., Pradyumnan P.P. Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. of Materials Science and Chemical Engineering, 2016, 4 (2), P. 79–88.
31. Behnajady M.A., Modirshahla N., Hamzavi R. Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J. of hazardous materials, 2006, 133 (1–3), P. 226–232.
32. Xia Juan, Anqi Wang, Xiang Liu, Zhongxing Su. Preparation and characterization of bifunctional, Fe3O4/ZnO nanocomposites and their use as photocatalysts. Applied Surface Science, 2011, 257 (23), P. 9724–9732.
33. Anandan S., Vinu A., et al. Photocatalytic activity of ZnO impregnated Hß and mechanical mix of ZnO/Hß in the degradation of monocrotophos in aqueous solution. J. of Molecular Catalysis A: Chemical, 2006, 256 (1–2), P. 312–320.
34. Pardeshi S.K., Patil A.B. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J. of hazardous materials, 2009, 163 (1), P. 403–409.
35. Kaur Japinder, Sonal Singhal. Heterogeneous photocatalytic degradation of rose bengal: effect of operational parameters. Physica B: Condensed Matter, 2014, 450, P. 49–53.
Рецензия
Для цитирования:
Kaldante Y.D., Shirsat R.N., Chaskar M.G. Фотокаталитическая деградация красителя бенгальской розы на механохимически синтезированном оксиде цинка под действием видимого света. Наносистемы: физика, химия, математика. 2021;12(6):773-782. https://doi.org/10.17586/2220-8054-2021-12-6-773-782
For citation:
Kaldante Y.D., Shirsat R.N., Chaskar M.G. Photocatalytic degradation of Rose Bengal dye over mechanochemically synthesized zinc oxide under visible light irradiation. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):773-782. https://doi.org/10.17586/2220-8054-2021-12-6-773-782