Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Study of the resistive switching and electrode degradation in Al/TiO2/FTO thin films upon thermal treatment in reducing atmosphere

https://doi.org/10.17586/2220-8054-2021-12-6-783-791

Abstract

Application of sol-gel derived titania nanoparticles in memristive thin film devices has been a subject of several studies. The reported data on the functional properties and stability of such devices scatter considerably. Meanwhile, the role of post-fabrication treatment, such as annealing in reducing atmosphere, is still poorly investigated for this class of devices. In this study, the effects of thermal annealing in a reducing atmosphere on the resistive switching behavior and the morphological changes of the top electrode during the electroforming process have been systematically addressed for the samples of Al/TiO2/FTO thin film memristors prepared using sol-gel derived titania. Manifestations of several phenomena affecting the functional stability of these thin films, such as electrode delamination and collapse due to formation of gas bubbles, appearance of electrochemical patterns at the electrode surface, and morphological changes induced by the electroforming process have been systematically established in relation with the various conditions of thermal treatment in a reducing atmosphere.

About the Authors

G. A. Illarionov
ITMO University
Russian Federation

49, Kronverkskiy prosp., St. Petersburg, 197101.



D. S. Kolchanov
ITMO University
Russian Federation

49, Kronverkskiy prosp., St. Petersburg, 197101.



V. V. Chrishtop
ITMO University
Russian Federation

49, Kronverkskiy prosp., St. Petersburg, 197101.



I. A. Kasatkin
Saint Petersburg State University
Russian Federation

7-9, Universitetskaya nab., St. Petersburg, 199034.



A. V. Vinogradov
ITMO University
Russian Federation

49, Kronverkskiy prosp., St. Petersburg, 197101.



M. I. Morozov
ITMO University
Russian Federation

49, Kronverkskiy prosp., St. Petersburg, 197101.



References

1. Yang J.J. Strukov D.B., Stewart D.R. Memristive devices for computing. Nat. Nanotechnol, 2012, 8, P. 13–24.

2. Zidan M.A. The future of electronics based on memristive systems. Nat. Electron, 2018, 1, P. 22–29.

3. Zhang Y., Wang Z., Zhu J., Yang Y., Rao M., Song W., Zhuo Y., Zhang X, Cui M., Shen L., Huang R., Yang J.J. Brain-inspired computing with memristors: challenges in devices, circuits, and systems. Appl. Phys. Rev., 2020, 7, P. 011308.

4. Velichko A., Belyaev M., Boriskov P. A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing. Electronics, 2019, 8(1), P. 75.

5. Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. The Missing Memristor Found. Nature, 2008, 453(7191), P. 80–83.

6. Waser R., Dittmann R., Staikov G., Szot K. Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater., 2009, 21(25-26), P. 2632–2663.

7. Chua L. Resistance Switching Memories Are Memristors. Appl. Phys. A, 2011, 102(4), P. 765–783.

8. Chua L.O., Kang S.M. Memristive devices and systems. Proc. IEEE, 1976, 64(2), P. 209–223.

9. Du C., Ma W., Chang T., Sheridan P., Lu W.D. Biorealistic Implementation of Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics. Adv. Funct. Mater., 2015, 25(27), P. 4290–4299.

10. Pickett M.D., Medeiros-Ribeiro G., Williams R.S. A Scalable Neuristor Built with Mott Memristors. Nat. Mater., 2012, 12(2), P. 114–117.

11. Yang J.Y., Pickett M.D, Li X., Ohlberg D.A.A., Stewart D.R., Williams S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotech. 2008, 3, P. 429–433.

12. Illarionov G.A., Morozova S.M., Chrishtop V.V., Einarsrud M.-A., Morozov M.I. Memristive TiO2: Synthesis, Technologies, and Applications. Front. Chem., 2020, 8, P. 724.

13. Acharyya D., Hazra A., Bhattacharyya P. A journey towards reliability improvement of TiO2 based resistive random-access memory: a review. Microelectron. Reliab., 2014, 54, P. 541–560.

14. Xia Q., Robinett W.; W. Cumbie M., Banerjee N., J. Cardinali T., Joshua Yang J., Wu W., Li X., M. Tong W., B. Strukov D., S. Snider G., Medeiros-Ribeiro G., Williams S.R. Memristor?CMOS Hybrid Integrated Circuits for Reconfigurable Logic. Nano Lett., 2009, 9(10), P. 3640–3645.

15. Jeong D.S., Thomas R., Katiyar R.S., Scott J.F. Overview on the Resistive Switching in TiO2 Solid Electrolyte. Integr. Ferroelectr., 2011, 124(1), P. 87–96.

16. Zhang F., Gan X., Li X., Wu L., Gao X., Zheng R., He Y., Liu X., Yang R. Realization of Rectifying and Resistive Switching Behaviors of TiO2 Nanorod Arrays for Nonvolatile Memory. Electrochem. Solid-State Lett., 2011, 14(10), P. H422.

17. Xia Q., Yang J.J. Memristive Crossbar Arrays for Brain-Inspired Computing. Nat. Mater., 2019, 18(4), P. 309–323.

18. Ryu J.-H., Kim S. Artificial Synaptic Characteristics of TiO2/HfO2 Memristor with Self-Rectifying Switching for Brain-Inspired Computing. Chaos, Solitons and Fractals, 2020, 140, P. 110236.

19. Ismail M., Chand U., Mahata C., Nebhen J., Kim S. Demonstration of Synaptic and Resistive Switching Characteristics in W/TiO2/HfO2/TaN Memristor Crossbar Array for Bioinspired Neuromorphic Computing. J. Mater. Sci. Technol., 2022, 96, P. 94–102.

20. Fu T., Liu X., Gao H., Ward J.E., Liu X., Yin B., Wang Z., Zhuo Y., Walker D.J.F., Joshua Yang J., Chen J., Lovley D.R., Yao J. Bioinspired Bio-Voltage Memristors. Nat. Commun., 2020, 11(1), P. 1861.

21. Roncador A., Jimenez-Garduco A.M., Pasquardini L., Giusti G., Cornella N., Lunelli L., Potrich C., Bartali R., Aversa L., Verucchi R., Serra M.D., Caponi S., Iannotta S., Macchi P., Musio C. Primary Cortical Neurons on PMCS TiO2 Films towards Bio-Hybrid Memristive Device: A Morpho-Functional Study. Biophys. Chem., 2017, 229, P. 115–122.

22. Gupta I., Serb A., Khiat A., Zeitler R., Vassanelli S., Prodromakis T. Real-Time Encoding and Compression of Neuronal Spikes by MetalOxide Memristors. Nat. Commun., 2016, 7, P. 12805.

23. Serb A., Corna A., George R., Khiat A., Rocchi F., Reato M., Maschietto M., Mayr C., Indiveri G., Vassanelli S., Prodromakis T. Memristive Synapses Connect Brain and Silicon Spiking Neurons. Sci. Rep., 2020, 10(1).

24. Vidis M., Plecenik T., Movˇ sko M., Tomavˇ sec S., Roch T., Satrapinskyy L., Gran?i? B., Plecenik A. Gasistor: A Memristor Based Gas-ˇ Triggered Switch and Gas Sensor with Memory. Appl. Phys. Lett., 2019, 115(9), P. 93504.

25. Sahu D.P., Jammalamadaka S.N. Detection of Bovine Serum Albumin Using Hybrid TiO2 + Graphene Oxide Based Bio – Resistive Random Access Memory Device. Sci. Rep., 2019, 9(1), P. 16141.

26. Haidry A.A., Ebach-Stahl A., Saruhan B. Effect of Pt/TiO2 Interface on Room Temperature Hydrogen Sensing Performance of Memristor Type Pt/TiO2/Pt Structure. Sensors Actuators B Chem., 2017, 253, P. 1043–1054.

27. Vilmi P., Nelo M., Voutilainen J.-V., Palosaari J., Porh¨ onen J., Tuukkanen S., Jantunen H., Juuti J., Fabritius T. Fully Printed Memristors for a¨ Self-Sustainable Recorder of Mechanical Energy. Flex. Print. Electron., 2016, 1(2), P. 25002.

28. Senthilkumar V., Kathalingam A., Kannan V., Rhee J.-K. Observation of Multi-Conductance State in Solution Processed Al/a-TiO2/ITO Memory Device. Microelectron. Eng., 2012, 98, P. 97–101.

29. Yoshida C., Tsunoda K., Noshiro H., Sugiyama Y. High Speed Resistive Switching in Pt/TiO2/TiN Film for Nonvolatile Memory Application. Appl. Phys. Lett., 2007, 91 (22), P. 223510.

30. Park J., Jung S., Lee J., Lee W., Kim S., Shin J., Hwang H. Resistive Switching Characteristics of Ultra-Thin TiOx. Microelectron. Eng. 2011, 88(7), P. 1136–1139.

31. Do Y.H., Kwak J.S., Hong J.P., Jung K., Im H. Al Electrode Dependent Transition to Bipolar Resistive Switching Characteristics in Pure TiO2 Films. J. Appl. Phys., 2008, 104(11), P. 114512.

32. Wei Z., Kanzawa Y., Arita K., Katoh Y., Kawai K., Muraoka S., Mitani S., Fujii S., Katayama K., Iijima M., Mikawa T., Ninomiya T., Miyanaga R., Kawashima Y., Tsuji K., Himeno A., Okada T., Azuma R., Shimakawa K., Sugaya H., Takagi T., Yasuhara R., Horiba K., Kumigashira H., Oshima M. Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism. In 2008 IEEE International Electron Devices Meeting; 2008, P. 1–4.

33. Yang J.J., Zhang M.-X., Strachan J.P., Miao F., Pickett M.D., Kelley R.D., Medeiros-Ribeiro G., Williams R.S. High Switching Endurance in TaOx Memristive Devices. Appl. Phys. Lett., 2010, 97(23), P. 232102.

34. Tao D.W., Chen J.B., Jiang Z.J., Qi B.J., Zhang K., Wang C.W. Making reversible transformation from electronic to ionic resistive switching possible by applied electric field in an asymmetrical Al/TiO2/FTO nanostructure. Appl. Surf. Sci., 2020, 502, P. 144124.

35. Hu L., Han W., Wang H. Resistive switching and synaptic learning performance of a TiO2 thin film based device prepared by sol-gel and spin coating techniques. Nanotechnology, 2020, 31, P. 155202.

36. Dai Y., Bao W., Hu L., Liu C., Yan X., Chen L., et al. Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching. 2D Materials, 2020, 4, P. 025012.

37. Xiao M., Musselman K.P., Duley W.W., Zhou N.Y. Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-Micro Lett., 2017, 9, P. 15.

38. Dongale T.D., Shinde S.S., Kamat R.K., Rajpure K.Y. Nanostructured TiO2 thin film memristor using hydrothermal process. J. Alloy. Compounds., 2014, 593, P. 267–270.

39. Abunahla H., Mohammad B., Mahmoud L., Darweesh M., Alhawari M., Jaoude M.A., et al. Memsens: memristor-based radiation sensor. IEEE Sens. J., 2018, 18, P. 3198–3205.

40. Illarionov G.A., Kolchanov D.S., Mukhin I.S., Kuchur O.A., Zhukov M.V., Sergeeva E., et al. Inkjet assisted fabrication of planar biocompatible memristors. RSC Adv., 2019, 9, P. 35998–36004.

41. Vilmi P., Nelo M., Voutilainen J.V., Palosaari J., Porh¨ onen J., Tuukkanen S., et al. Fully printed memristors for a self-sustainable recorder of¨ mechanical energy. Flex. Print. Electron., 2016, 1, P. 025002.

42. Szot K., Speier W., Bihlmayer G., Waser R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Mater., 2006, 5(4), P. 312–320.

43. Yang J., Miao F., Pickett M.D., Ohlberg D.A.A., Stewart D.R., Lau C.N., Williams R.S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20(21), P. 215201.

44. Jang M.H., Agarwal R., Nukala P., Choi D., Johnson A.T.C., Chen I.-W., Agarwal R. Observing Oxygen Vacancy Driven Electroforming in Pt-TiO2-Pt Device via Strong Metal Support Interaction. Nano Lett., 2016, 16(4), P. 2139–2144.

45. Munstermann R., Yang J.J., Strachan J.P., Medeiros-Ribeiro G., Dittmann R., Waser R. Morphological and electrical changes in TiO¨ 2 memristive devices induced by electroforming and switching. Physica Status Solidi (RRL) - Rapid Research Letters, 2010, 4(1-2), P. 16–18.

46. Prusakova V., Dire S., Collini C., Pasquardini L., Vanzetti L., Resta G., Pederzolli C., Lorenzelli L. Optimisation and Memristive Response of Sol-Gel Derived TiO2 thin films. In Proc. XVIII AISEM Annual Conference. AISEM 2015, IEEE Inc. 2015.

47. Schroeder H., Jeong D.S. Resistive switching in a Pt/TiO2/Pt thin film stack – a candidate for a non-volatile ReRAM. Microelectronic Engineering, 2007, 84(9-10), P. 1982–1985.

48. Waser R., Aono M. Nanoionics-Based Resistive Switching Memories. Nanosci. Technol. A Collect. Rev. from Nat. Journals, 2009, P. 158–165.

49. Kwon D.-H., Lee S., Kang C.S., Choi Y.S., Kang S.J., Cho H.L., Sohn W., Jo J., Lee S.-Y., Oh K.H., Noh T.W., De Souza R.A., Martin M., Kim M. Unraveling the Origin and Mechanism of Nanofilament Formation in Polycrystalline SrTiO3 Resistive Switching Memories. Adv. Mater., 2019, 31(28), P. 1901322.

50. Kim K.M., Choi B.J., Koo B.W., Choi S., Jeong D.S., Hwang C.S. Resistive Switching in Pt/Al2O3/TiO2/Ru Stacked Structures. Electrochem. Solid-State Lett., 2006, 9(12), P. G343.

51. Schroeder H., Jeong D.S. Resistive switching in a Pt/TiO2/Pt thin film stack – a candidate for a non-volatile ReRAM. Microelectron. Eng., 2007, 84, P. 1982.

52. Munstermann R., Yang J.J., Strachan J.P., Medeiros-Ribeiro G., Dittmann R. and Waser R. Morphological and electrical changes in TiO¨ 2 memristive devices induced by electroforming and switching. phys. stat. sol. (RRL), 2010, 4, P. 16–18.

53. Yuzhakov V., Chang H.-C., Miller A. Pattern Formation during Electropolishing. Phys. Rev. B, 1997, 56, P. 12608–12624.

54. Yuzhakov V.V., Takhistov P.V., Miller A.E., Chang H.-C. Pattern Selection during Electropolishing Due to Double-Layer Effects. Chaos Interdiscip. J. Nonlinear Sci., 1999, 9(1), P. 62–77.


Review

For citations:


Illarionov G.A., Kolchanov D.S., Chrishtop V.V., Kasatkin I.A., Vinogradov A.V., Morozov M.I. Study of the resistive switching and electrode degradation in Al/TiO2/FTO thin films upon thermal treatment in reducing atmosphere. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):783-791. https://doi.org/10.17586/2220-8054-2021-12-6-783-791

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)