The influence of condition of the monazite structured La0.9Y0.1PO4 nanocrystals sintering on thermal and mechanical properties of the material
https://doi.org/10.17586/2220-8054-2021-12-6-799-807
Abstract
A lanthanum orthophosphate- and yttrium-based monazite structured La0.9Y0.1PO4 nanocrystalline material was synthesized. The influence of the thermal treatment temperature on its thermal and mechanical properties has been determined. It was shown that the hydrothermal treatment of coprecipitated phosphates at 230 ◦C for 110 minutes yielded monazite structured nanoparticles with the crystallite size of about 16 nm. Nanopowder thermal treatment for 20 min in the annealing-quenching mode at 1000–1400 ◦C resulted in obtaining compact materials, the porosity of which varied from 52 to 27% with the grain growth from ∼20 to ∼100 nm. Active sintering occurred at temperatures above 1300 ◦C. Nanocrystalline materials obtained by heat treatment at 1200 ◦C with a grain size of ∼40 nm have a porosity of 42%, microhardness of Hv(25 ◦C) = 4±0.5 GPa, thermal conductivity λ(25 ◦C) = 0.4 W·m−1·K−1, and can be used as thermal insulation material.
Keywords
About the Authors
M. O. EnikeevaRussian Federation
26, Politekhnicheskaya St., 194021, St. Petersburg;
26, Moskovsky Ave., 190013, St. Petersburg.
O. V. Proskurina
Russian Federation
26, Politekhnicheskaya St., 194021, St. Petersburg;
26, Moskovsky Ave., 190013, St. Petersburg.
E. S. Motaylo
Russian Federation
26, Moskovsky Ave., 190013, St. Petersburg.
D. P. Danilovich
Russian Federation
26, Moskovsky Ave., 190013, St. Petersburg.
V. V. Gusarov
Russian Federation
26, Politekhnicheskaya St., 194021, St. Petersburg.
References
1. Lomanova N.A., Tomkovich M.V., Danilovich D.P., Osipov A.V., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic characteristics of nanocrystalline BiFeO3-based materials prepared by solution combustion synthesis. Inorg. Mater., 2020, 56(12), P. 1271–1277.
2. Martinson K.D., Kondrashkova I.S., Omarov S.O., D.A. Sladkovskiy D.A., Kiselev A.S., Kiseleva T.Yu., Popkov V.I. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Technology, 2020, 31(1), P. 402– 408.
3. Lomakin M.S., Proskurina O.V., Sergeev A.A., Buryanenko I.V., Semenov V.G., Voznesenskiy S.S., Gusarov V.V.Crystal structure and optical properties of the Bi–Fe–W–O pyrochlore phase synthesized via a hydrothermal method. Journal of Alloys and Compounds, 2021, 889, P. 161598.
4. Maslennikova T.P., Osipov A.V., Mezentseva L.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Gusarov V.V. Synthesis, Mutual Solubility, and Thermal Behavior of Nanocrystals in the LaPO4–YPO4–H2O System. Glass Physics and Chemistry, 2010, 36(3), P. 351–357.
5. Gavrichev K.S., Ryumin M.A., Tyurin A.V., Gurevich V.M., Komissarova L.N.. Refined heat capacity of LaPO4 in the temperature range 0–1600K. Thermochimica Acta, 2008, 474(1–2), P. 47–51.
6. Clarke D.R., Phillpot S.R. Thermal barrier coating materials, Materials Today, 2005, 8(6), P. 22–29.
7. Chen D., Dambra C., Dorfman M. Process and properties of dense and porous vertically-cracked yttria stabilized zirconia thermal barrier coatings, Surface and Coatings Technology, 2020, 404, P. 126467.
8. Chen Y., Wang N., Ola O., Xia Y., Zhu Y. Porous ceramics: Light in weight but heavy in energy and environment technologies, Materials Science and Engineering: R: Reports, 2021, 143, P. 100589.
9. Mehboob G., Liu M.-J., Xu T., Hussain S., Mehboob G., Tahir A. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime, Ceramics International, 2020, 46(7), P. 8497–8521.
10. Orlova A.I., Orlova V.A., Orlova M.P., Bykov D.M., Stefanovskii S.V., Stefanovskaya O.I., Nikonov B.S. The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste. Radiochemistry, 2006, 48, P. 330–339.
11. Li M, Yuxian C., Lei G., Chenglong Z., Yuchen Z., Sixian H., Fuxing Y. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts. Ceram. Int., 2017, 43(10), P. 7797–7803.
12. Zhao Z., Heng C., Huimin X., Fu-Zhi D., Xiaohui W., Peng Z., Yanchun Z. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. J. Mater. Sci. Technol., 2019, 35(12), P. 2892– 2896.
13. Monazite-based thermal barrier coatings: US6863999B1 USA F01D5/288, Sudre O.H., Marshall D.B., Morgan P.E.D. patent holder: Teledyne Scientific and Imaging LLC, 2005.
14. Montel J.M., Glorieux B., Seydoux-Guillaume A.-M., Wirth R. Synthesis and sintering of a monazite–brabantite solid solution ceramic for nuclear waste storage. J. Phys. Chem. Solids, 2006, 67(12), P. 2489–2500.
15. Hikichi Y., Nomura T. Melting Temperatures of Monazite and Xenotime. J. Am. Ceram. Soc, 1987, 70(10), P. 252–253.
16. Galahov F.Y. Diagrammy sostoyaniya sistem tugoplavkih oksidov: spravochnik. V. 5. Dvojnye sistemy ch. 2. [State diagrams of refractory oxides]. Leningrad, Nauka, 1986, 5, 359. (in Russian)
17. Van Hoozen C.J., Gysi A.P., Harlov D.E. The solubility of monazite (LaPO4, PrPO4, NdPO4, and EuPO4) endmembers in aqueous solutions from 100 to 250◦C. Geochim. Cosmochim. Acta, 2020, 280, P. 302–316.
18. Gratz R., Heinrich W. Monazite-xenotime thermobarometry; experimental calibration of the miscibility gap in the binary system CePO4 –YPO4. Am. Mineral, 1997, 82(7), P. 772–780.
19. Podor R., Cuney M., Nguyen T.C. Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780◦C and 200 MPa. Am. Mineral., 1995, 80(11), P. 1261–1268.
20. Huittinen N., Arinicheva Y., Kowalski P.M., Vinograd V.L., Neumeier S., Bosbach D. Probing structural homogeneity of La1−xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater., 2017, 486, P. 148–157.
21. Zeng P., Teng Y., Huang Y., Wu L., Wang X. Synthesis, phase structure and microstructure of monazite-type Ce1−xPrxPO4 solid solutions for immobilization of minor actinide neptunium. J. Nucl. Mater., 2014, 452(1–3), P. 407–413.
22. Arinicheva Y., Gausse C., Neumeier S., Brandt F., Rozov K., Szenknect S., Dacheux N., Bosbach D., Deissmann G. Influence of temperature on the dissolution kinetics of synthetic LaPO4-monazite in acidic media between 50 and 130◦C. J. Nucl. Mater., 2018, 509, P. 488–495.
23. Ewing R.C., Wang L. Phosphates as nuclear waste forms. Rev. Mineral., 2002, 48(1), P. 673–699.
24. Grechanovsky A.E., Eremin N.N., Urusov, V.S. Radiation resistance of LaPO4 (monazite structure) and YbPO4 (zircon structure) from data of computer simulation. Phys. Solid State, 2013, 55(9), P. 1929–1935.
25. Schlenz H., Heuser J., Neumann A., Schmitz S., Bosbach D. Monazite as a suitable actinide waste form. Z. Kristallogr., 2013, 228(3), P. 113–123.
26. Yang Z., Yuan G., Duan X., Liang S., Sun G. HDEHP assisted solvothermal synthesis of monodispersed REPO4 (RE = La–Lu, Y) nanocrystals and their photoluminescence properties. New J. Chem., 2020, 44(11), P. 4386–4393.
27. Kenges K.M., Proskurina O.V., Danilovich D.P, Aldabergenov M.K., Gusarov V.V. Influence of the conditions for preparing LaPO4-based materials with inclusions of the LaP3O9 phase on their thermal and mechanical properties. Russ. J. Appl. Chem., 2018, 91(9), P. 1538–1548.
28. Thust A., Arinicheva Y., Haussuhl E., Ruiz-Fuertes J., Bayarjargal L., Vogel S.C., Neumeier S., Winkler B. Physical properties of¨ La1−xEuxPO4, 0 ≤ x ≤ 1, monazite-type ceramics. J. Am. Ceram. Soc., 2015, 98(12), P. 4016–4021.
29. Thust A., Hirsch A., Haussuhl E., Schrodt N., Loison L., Schott P., Peters L., Roth G., Winkler B. Physical properties and microstructures of¨ La1−xPrxPO4 monazite-ceramics. Phys. Chem. Miner., 2018, 45(4), P. 323–332.
30. Min W., Daimon K., Matsubara T., Hikichi Y. Thermal and mechanical properties of sintered machinable LaPO4–ZrO2 composites. Mater. Res. Bull., 2002, 37(6), P. 1107–1115.
31. Colomer M.T. Effect of Sr2+ doping on sintering behavior, microstructural development and electrical properties of LaPO4 ·nH2O nanorods prepared by drymechanical milling. Int. J. Hydrogen Energy, 2018, 43(29), P. 13462–13474.
32. Arinicheva Y., Clavier N., Neumeier S., Podorb R., A.Bukaemskiy A., M.Klinkenberg M., Roth G., Dacheux N., Bosbach D. Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. J. Eur. Ceram. Soc., 2018, 38(1), P. 227–234.
33. Proskurina O.V., Sivtsov E.V., Enikeeva M.O., Sirotkin A.A., Abiev R. Sh., Gusarov V.V. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosyst. Physics, Chem. Math, 2019, 10(2), P. 206–214.
34. Li P., Zhang Y., Zhang L., Li F., Guo Y., Li Y., Gao W. Phase control of Eu3+-doped YPO4 nano-/microcrystals. Cryst. Growth Des., 2017, 17(11), P. 5935–5944.
35. Ugolkov V.L., Mezentseva L.P., Osipov A.V., Popova V.F., Maslennikova T.P., Akatov A.A., Doil’nitsyn V.A. Synthesis of Nanopowders and Physicochemical Properties of Ceramic Matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) Systems. Russian Journal of Applied Chemistry, 2017, 90(1), P. 28–33.
36. Terra O., Clavier N., Dacheux N., Podorb R. Preparation and characterization of lanthanum–gadolinium monazites as ceramics for radioactive waste storage. New J. Chem., 2003, 27(6), P. 957–967.
37. Deschanels X., Seydoux-Guillaume A.M., Magnin V., Mesbah A., Tribet M., Moloney M.P., Serruys Y., Peuget S., Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study. J. Nucl. Mater., 2014, 448(1–3), P. 184–194.
38. Martel L., Islam Md. A., Popa K., Vigier J.-F., Colineau E., Bolvin H., Griveau J.-C. Local structure and magnetism of La1−xMxPO4 (M=Sm, 239Pu, 241Am) explained by experimental and computational analyses. J. Phys. Chem., 2021, 125(40), P. 22163–22174.
39. Morgan P.E.D., Marshall D.B. Ceramic composites of monazite and alumina. J. Am. Ceram., 1995, 78, P. 1553–1563.
40. Wu J., Jia H., Li M., Liu Z. Influence of pH on nano-phosphor YPO4:2%Sm3+ and luminescent properties. Appl. Phys. A, 2020, 126(2), P. 87.
41. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D.P., Gusarov V.V. Influence of hydrothermal treatment conditions on the formation of lanthanum orthophosphate nanoparticles of monazite structure. Russ. J. Appl. Chem., 2020, 93(4), P. 540–548.
42. Fan W., Song X., Bu Y., Sun S., Zhao X. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B, 2006, 110(46), P. 23247–23254.
43. Bryukhanova K.I., Nikiforova G.E., Gavrichev K.S. Synthesis and study of anhydrous lanthanide orthophosphate (Ln = La, Pr, Nd, Sm) nanowhiskers. Nanosyst. Physics, Chem. Math, 2016, 7(3), P. 451–458.
44. Rafiuddin M.R., Grosvenor A.P. A structural investigation of hydrous and anhydrous rare-earth phosphates. Inorg. Chem., 2016, 55(19), P. 9685–9695.
45. Hirsch A., Kegler P., Alencar I., Ruiz-Fuertes J., Shelyug A., Peters L., Schreinemachers C., Neumann A., Neumeier S., Liermann H., Navrotsky A., Roth G. Structural, vibrational, and thermochemical properties of the monazite-type solid solution La1−xPrxPO4. J. Solid State Chem., 2017, 245, P. 82–88.
46. Perri Ere L., Bregiroux D., Naitali B., Audubert F., Champion E., Smith D.S., Bernache-Assollant D. Microstructural dependence of the thermal and mechanical properties of monazite LnPO4 (Ln= La to Gd). J. Eur. Ceram. Soc., 2007, 27(10), P. 3207–3213.
47. Du A., Wan C., Qu Z., Pan W. Thermal Conductivity of Monazite-Type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc., 2009, 92(11), P. 2687–2692.
48. Du A., Wan C., Qu Z., Pan W. Effects of texture on the thermal conductivity of the LaPO4 Monazite. J. Am. Ceram. Soc., 2010, 93(9), P. 2822–2827.
49. Maier C.G., Kelley K.K. An equation for the representation of high-temperature heat content data. J. Am. Chem. Soc., 1932, 54(8), P. 3243– 3246.
50. Gusarov V.V., Suvorov S.A. Melting points of locally equilibrium surface phases in polycrystalline systems based on a single volume phase. J. Appl. Chem. of the USSR, 1990, 63(8), P. 1560–1565.
51. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochim. Acta, 1995, 256(2), P. 467–472.
Review
For citations:
Enikeeva M.O., Proskurina O.V., Motaylo E.S., Danilovich D.P., Gusarov V.V. The influence of condition of the monazite structured La0.9Y0.1PO4 nanocrystals sintering on thermal and mechanical properties of the material. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6):799-807. https://doi.org/10.17586/2220-8054-2021-12-6-799-807