Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy

https://doi.org/10.17586/2220-8054-2017-8-6-701-708

Аннотация

Calculations of the magnetic field required to reverse the magnetization of islands with out-of-plane anisotropy are carried out using a model describing nucleation followed by rapid domain wall motion. The calculations are based on an extension of the Stoner–Wohlfarth model where thermal activation is taken into account as well as the applied magnetic field. The calculated switching field distribution (SFD) is compared with recently reported experimental measurements of de Vries et al. [New J. Phys. 19, 093019 (2017)] on circular 220 nm CoPt islands. The measured results can be closely reproduced by choosing appropriate values of two parameters, the nucleation volume, and the effective anisotropy. Both the position of SDF peaks and their width at high and low temperature, 300 K and 10 K, are amply described using the same set of parameter values for a given island, while there is a large difference between islands with weak and strong magnetic anisotropies. There is no need to introduce the temperature dependence of the activation energy at zero field. This is in contrast with the estimates obtained from the so-called diamond model used by de Vries et al. in their data analysis where multiple adjustable parameters are introduced, and a three- to fourfold change in the zero field activation energy is invoked.

Об авторах

S. Y. Liashko
ITMO University; Science Institute and Faculty of Physical Sciences, Univ. of Iceland
Россия

Kronverkskiy, 49, St. Petersburg, 197101; 107 Reykjavík, Iceland



H. Jónsson
Science Institute and Faculty of Physical Sciences, Univ. of Iceland; Center for Nonlinear Studies
Исландия

107 Reykjavík, Iceland; Los Alamos, NM 87545, USA



V. M. Uzdin
ITMO University; St. Petersburg State University
Россия

Kronverkskiy, 49, St. Petersburg, 197101; St. Petersburg, 198504



Список литературы

1. Sun S., Murray C.B., Weller D., Folks L., Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460), P. 1989–1992.

2. Allwood D.A., Xiong G., Faulkner C.C., Atkinson D., Petit D., Cowburn R.P. Magnetic domain-wall logic. Science, 2005, 309(5741), P. 1688–1692.

3. Katine J.A., Albert F.J., Buhrman R.A., Myers E.B., Ralph D.C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Physical Review Letters, 2000, 84(14), P. 3149.

4. Jacobs S., Bean C.P. Fine Particles, Thin Films and Exchange Anisotropy. Magnetism vol. III, ed. Rado G.T. and Suhl H. (New York: Academic), 1963, P. 275.

5. Zijlstra H. Permanent magnets, theory. Handbook of Magnetic Materials, vol. 3, ed. Wohlfarth E.P. (Amsterdam: North-Holland), 1982, P. 37–107.

6. Givord D., Lu Q., Rossignol M.F. Coercivity in hard magnetic materials. In Science and Technology of Nanostructured Magnetic Materials, Springer US, 1991, P. 635–656.

7. Zhu J.G., Peng Y., Laughlin D.E. Toward an understanding of grain-to-grain anisotropy field variation in thin film media. IEEE transactions on magnetics, 2005, 41(2), P. 543–548.

8. Terris B.D., Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media. Journal of physics D: Applied physics, 2005, 38(12), P. R199.

9. Engel B.N., Akerman J., Butcher B., Dave R.W., DeHerrera M., Durlam M., Slaughter J.M., et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Transactions on Magnetics, 2005, 41(1), P. 132–136.

10. Jang H.J., Eames P., Dahlberg E.D., Farhoud M., Ross C.A. Magnetostatic interactions of single-domain nanopillars in quasistatic magnetization states. Applied Physics Letters, 2005, 86(2), P. 023102.

11. Kitade Y., Komoriya H., Maruyama T. Patterned media fabricated by lithography and argon-ion milling. IEEE transactions on magnetics, 2004, 40(4), P. 2516–2518.

12. Thomson T., Hu G., Terris B.D. Intrinsic Distribution of Magnetic Anisotropy in Thin Films Probed by Patterned Nanostructures. Phys. Rev. Lett., 2006, 96, P. 257204.

13. Shaw J.M., Rippard W.H., Russek S.E., Reith T., Falco C.M. Origins of switching field distributions in perpendicular magnetic nanodot arrays. Journal of Applied Physics, 2007, 101(2), P. 023909.

14. Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A, 1948, 240, P. 599–642.

15. de Vries J., Bolhuis T., Abelmann L. Temperature dependence of the energy barrier and switching field of sub-micron magnetic islands with perpendicular anisotropy. New J. Phys., 2017, 19, P. 093019.

16. Liashko S.Y., Uzdin V.M., Jo´nsson H. Thermal stability of magnetic states in submicron magnetic islands. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 572–578.

17. Liashko S.Y., Jo´nsson H., Uzdin V.M. The effect of temperature and external field on transitions in elements of kagome spin ice. New J. Phys., 2017, 19, P. 113008.

18. Moskalenko M., Bessarab P.F., Uzdin V.M., Jónsson H. Qualitative Insight and Quantitative Analysis of the Effect of Temperature on the Coercivity of a Magnetic System. AIP Advances, 2016, 6(2), P. 025213.

19. Engelen J.B., Delalande M., Le Febre A.J., Bolhuis T., Shimatsu T., Kikuchi N., Abelmann L., Lodder J.C. Thermally induced switching field distribution of a single CoPt dot in a large array. Nanotechnology, 2009, 21(3), P. 035703.

20. Bessarab P. F., Uzdin V. M. Jónsson H. Harmonic Transition State Theory of Thermal Spin Transitions. Phys. Rev. B, 2012, 85(18), P. 184409.

21. Engelen J.B.C., Delalande M., le Febre A.J., Bolhuis T., Shimatsu T., Kikuchi N., Abelmann L., Lodder J.C. Thermally induced switching field distribution of a single CoPt dot in a large array. Nanotechnology, 2010, 21(3), P. 035703.

22. Bessarab P.F., Uzdin V.M. Jo´nsson H. Size and Shape Dependence of Thermal Spin Transitions in Nanoislands. Phys. Rev. Lett., 2013, 110(2), P. 020604.

23. Ivanov A.A., Bessarab P.F., Uzdin V.M., Jónsson H. Magnetic exchange force microscopy: Theoretical analysis of induced magnetization reversals. Nanoscale, 2017, 9(35), P. 13320–13325.


Рецензия

Для цитирования:


Liashko S.Y., Jónsson H., Uzdin V.M. Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy. Наносистемы: физика, химия, математика. 2017;8(6):701-708. https://doi.org/10.17586/2220-8054-2017-8-6-701-708

For citation:


Liashko S.Y., Jónsson H., Uzdin V.M. Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):701-708. https://doi.org/10.17586/2220-8054-2017-8-6-701-708

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)