Mathematical modeling of magnetic field guided colloidal particle deposition with significant electric double layer interactions
https://doi.org/10.17586/2220-8054-2017-8-4-426-434
Abstract
In this work, we propose a simple theoretical method for predicting the rate and localization of magnetic field guided particle deposition from aqueous colloids. This method accounts for the colloidal electric double layer interactions between particles and vessel walls. The obtained results suggest that the colloidal interactions can be used to increase the rate of particle deposition and improve its localization.
About the Authors
A. V. AlfimovRussian Federation
197101; Kronverkskiy, 49; St. Petersburg
M. A. Shumova
Russian Federation
197101; Kronverkskiy, 49; St. Petersburg
E. M. Aryslanova
Russian Federation
197101; Kronverkskiy, 49; St. Petersburg
S. A. Chivilikhin
Russian Federation
197101; Kronverkskiy, 49; St. Petersburg
References
1. Al-Jamal K.T., Bai J., Wang J.T.-W., Protti A., Southern P., Bogart L., Heidari H., Li X., Cakebread A., Asker D., Al-Jamal W.T., Shah A., Bals S., Sosabowski J., Pankhurst Q.A. Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Lett., 2016, 16, P. 5652–5660.
2. Sharma S., Katiyar V.K., Singh U. Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field. Journal of Magnetism and Magnetic Materials, 2015, 379, P. 102–107.
3. Kulkarni S., Ramaswamy B., Horton E., Gangapuram S., Nacev A., Depireux D., Shimoji M., Shapiro B. Quantifying the motion of magnetic particles in excised tissue. Effect of particle properties and applied magnetic field. Journal of Magnetism and Magnetic Materials, 2015, 393, P. 243–252.
4. Shapiro B., Kulkarni S., Nacev A., Muro S., Stepanov P.Y., Weinberg I.N. Open challenges in magnetic drug targeting. WIREs Nanomed. Nanobiotechnol., 2014, 7, P. 446–457.
5. Shapiro B., Kulkarni S., Nacev A., Sarwar A., Preciado D., Depireux D.A. Shaping Magnetic Fields to Direct Therapy to Ears and Eyes. Annu. Rev. Biomed. Eng., 2014, 16, P. 455–481.
6. Li X., Wei J., Aifantis K.E., Fan Y., Feng Q., Cui F.-Z., Watari F. Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res., 2016, 104, P. 1285–1296.
7. Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physiochemical characteristics and clinical applications - a review. J. Drug Target, 1998, 6, P. 167–174.
8. Weissleder, R., Bogdanov, A., Neuwelt, E.A., Papisov, M. Long circulating iron oxides for MR imaging. Adv. Drug. Delivery Rev., 1995, 16, P. 321–334.
9. Berry C.C., Curtis A.S.G. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys., 2003, 36, R198–R206.
10. Harisinghani M.G., Barentsz J., Hahn P.F., Deserno W. M., Tabatabaei S., van de Kaa C. H., de la Rosette J., Weissleder R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med., 2003, 348, P. 2491–2499.
11. Jordan A., Wust P., F¨ahling H., John W., Hinz A., Felix R. Inductive heating of ferromagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int. J. Hyerthermia, 1997, 9, P. 51–68.
12. Neilsen O.S., Horsman M., Overgaard J. A future hyperthermia in cancer treatment. E. J. Cancer, 2001, 37, P. 1587–1589.
13. Tibbe A.G., de Grooth B.G., Greve J., Liberti P.A., Dolan G.J., Terstappen L.W. Optical tracking and detection of immunomagnetically selected and aligned cells. Nature Biotechnol., 1999, 17, P. 1210–1213.
14. Kularatne B.Y., Lorigan P., Browne S., Suvarna S.K., Smith M.O., Lawry J. Monitoring tumour cells in the peripheral blood of small cell lung cancer patients. Cytometry, 2002, 50, P. 160–167.
15. Zigeuner R.E., Riesenberg R., Pohla H., Hofstetter A., Oberneder R. Isolation of circulating cancer cells from whole blood by immunomagnetic cell enrichment and unenriched immunocytochemistry in vitro. J. Urol., 2003, 169, P. 701–705.
16. Morisada S., Miyata N., Iwahori K. Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids. J. Microbiol. Methods, 2002, 51, P. 141–148.
17. Tan W., Wang K., He X., Zhao X.J., Drake T., Wang L., Bagwe R.P. Bionanotechnology based on silica nanoparticles. Medicinal Research Reviews, 2004,24(5), P. 621–638.
18. 18 Korolev D.V., Naumisheva E.B., Gareev K.G., Luchinin V.V., Panov M.F., Permyakov N.V. Colloidal .particles based on silica coated iron oxide for MRI-controlled catheter embolization. Translational Medicine, 2015, 2(4), P. 48–53.
19. Shukla N., Saxena A., Gupta V., Rawat A.S., Kumar V., Shrivastava S., Rajagopal C., Rai P.K. Magnetic silica nanoparticles for the removal of Pbsup>+2</sup> from water. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(3), P. 488–491.
20. Gijs M.A.M., Lacharme F., Lehmann U. Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis. Chem. Rev., 2010, 110, P. 1518–1563.
21. Jamshaid T., Neto E.T.T., Eissa M.M., Zine N., Kunita M.H., El-Salhi A.E. Elaissari A. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Past, Present and Future challenges of Biosensors and Bioanalytical tools in Analytical Chemistry: a tribute to Prof Marco Mascini, 2016, 79, P. 344–362.
22. Sajeesh P., Sen A.K. Particle separation and sorting in microfluidic devices : a review. Microfluidics and Nanofluidics, 2014, 17, P. 1-52.
23. Cao Q., Han X., Li L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip, 2014, 14, P. 2762–2777.
24. Ortega Garc´ıa B., Kharissova O.V., Rasika Dias H.V., Servando Aguirre T. F., Salinas Hern´andez J. Nanocomposites with antibacterial properties using CNTs with magnetic nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 161–168.
25. Wang M., Le He, Yin Y. Magnetic field guided colloidal assembly. Materials Today, 2013, 16, P. 110–116.
26. Chen C.-H., Abate A.R., Lee D., Terentjev E.M. Weitz D.A. Microfluidic Assembly of Magnetic Hydrogel Particles with Uniformly Anisotropic Structure. Adv. Mater. , 2009, 21, P. 3201–3204.
27. Bernad S.I., Totorean A.F., Vekas L. Particles deposition induced by the magnetic field in the coronary bypass graft model. Journal of Magnetism and Magnetic Materials, 2016, 401, P. 269–286.
28. Larimi M.M., Ramiar A., Ranjbar A.A. Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel. Journal of Magnetism and Magnetic Materials, 2014, 362, P. 58–71.
29. Heidsieck A., Vosen S., Zimmermann K., Wenzel D., Gleich B. Analysis of Trajectories for Targeting of Magnetic Nanoparticles in Blood Vessels. Mol. Pharmaceutics, 2012, 9, P. 2029–2038.
30. Gitter K., Odenbach S. Investigations on a Branched Tube Model in Magnetic Drug Targeting – Systematic Measurements and Simulation. IEEE Trans. Magn., 2012, 49, P. 343–348.
31. Kyrilenko A.V., Chekhun V.F., Podoltsev A.D., Kondratenko I.P., Kucheryavaya I.N., Bondar V.V., Shpilevaya S.I., Todor I.N. Analysis of the force action of a high-gradient magnetic field on magnetic nanoparticles in a flowing fluid. Reports of the National Academy of Sciences of Ukraine, 2010, 9, P. 162–172.
32. Kronm¨uller H., Parkin S. Handbook of Magnetism and Advanced Magnetic Materials. John Wiley & Sons, 2007, 3064 pp.
33. Xiao-fan G., Yong Y., Xiao-jing Z. Analytic expression of magnetic field distribution of rectangular permanent magnets, Applied Mathematics and Mechanics, 2004, 25(3), P. 297–306.
34. Lyklema J. Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Interfaces. Academic Press, 2005, 787 pp.
35. Lyklema J. Fundamentals of Interface and Colloid Science. Volume IV: Particulate colloids. Academic Press, 2005, 692 pp.
36. Alfimov A.V., Aryslanova E.M., Chivilikhin S.A. An analytical method for determining the interaction energy between multiple identical spherical colloidal zinc oxide nanoparticles. J. Phys.: Conf. Ser., 2014, 541, P. 012063.
37. Korolev D.V., Galagudza M.M., Afonin M.V., Shutkevitch V.V. Magnetic field-guided delivery of magnetite nanoparticles in the model in vitro system. Translational Medicine, 2015, 2(4), P. 20–27.
Review
For citations:
Alfimov A.V., Shumova M.A., Aryslanova E.M., Chivilikhin S.A. Mathematical modeling of magnetic field guided colloidal particle deposition with significant electric double layer interactions. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):426-434. https://doi.org/10.17586/2220-8054-2017-8-4-426-434